
Simulink® Real-Time™

Reference

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Real-Time™ Reference

© COPYRIGHT 2002–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2007 Online only New for Version 3.2 (Release 2007a)
September 2007 Online only Updated for Version 3.3 (Release 2007b)
March 2008 Online only Updated for Version 3.4 (Release 2008a)
October 2008 Online only Updated for Version 4.0 (Release 2008b)
March 2009 Online only Updated for Version 4.1 (Release 2009a)
September 2009 Online only Updated for Version 4.2 (Release 2009b)
March 2010 Online only Updated for Version 4.3 (Release 2010a)
April 2011 Online only Updated for Version 5.0 (Release 2011a)
September 2011 Online only Updated for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)

Contents

Functions

1

Simulink Real-Time API Reference for C

2
C API Error Messages . 2-2

C API Structures and Functions — Alphabetical List . . 2-6

Simulink Real-Time API Reference for COM

3
COM API Methods — Alphabetical List 3-2

Configuration Parameters

4
Configuration Parameters . 4-2
Simulink Real-Time Options Pane . 4-3
Automatically download application after building 4-4
Download to default target PC . 4-5
Specify target PC name . 4-6
Name of Simulink Real-Time object created by build
process . 4-7

Use default communication timeout 4-8
Specify the communication timeout in seconds 4-9
Execution mode . 4-10

v

Real-time interrupt source . 4-11
I/O board generating the interrupt 4-12
PCI slot (-1: autosearch) or ISA base address 4-16
Log Task Execution Time . 4-17
Signal logging data buffer size in doubles 4-18
Number of events (each uses 20 bytes) 4-21
Double buffer parameter changes . 4-22
Load a parameter set from a file on the designated target
file system . 4-24

File name . 4-25
Build COM objects from tagged signals/parameters 4-26
Generate CANape extensions . 4-27
Include model hierarchy on the target application 4-28
Enable Stateflow animation . 4-29

Using SimulinkReal-TimeExplorer Instruments

5
Instrumenting a Model . 5-2

Create Instrument Panel . 5-4

Configure Instrument for Set Point Parameter 5-5

Configure Instrument for Tank Level Signal 5-7

Run Instrumented Model . 5-9

Instruments — Alphabetical List . 5-11

vi Contents

Target Computer Command-Line Interface
Reference

6
Target Computer Commands . 6-2
Target Object Methods . 6-2
Target Object Property Commands 6-3
Scope Object Methods . 6-5
Scope Object Property Commands . 6-6
Aliasing with Variable Commands 6-8

Support Package Reference

7
Support Package Functions . 7-2

vii

viii Contents

1

Functions

getxpcenv

Purpose List environment properties assigned to MATLAB variable (not
recommended)

Syntax getxpcenv
getxpcenv propertyname

Description getxpcenv displays, in the Command Window, the property names and
current property values for the Simulink® Real-Time™ environment.

Note Function getxpcenv will be removed in a future release. Use
SimulinkRealTime.getTargetSettings instead.

getxpcenv propertyname displays the current value of property
propertyname. The environment properties define communication
between the host computer and target computer and the type of target
boot kernel created during the setup process.

Tip To access a subset of these properties in Simulink Real-Time
Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 1-3

• “Target Settings” on page 1-9

• “Boot Configuration” on page 1-12

• “Host Configuration” on page 1-14

1-2

getxpcenv

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in
the Target Properties pane of
Simulink Real-Time Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of
Simulink Real-Time Explorer.

1-3

getxpcenv

Environment Property Description

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of Simulink
Real-Time Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane of
Simulink Real-Time Explorer.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

1-4

getxpcenv

Environment Property Description

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box
in the Target Properties pane
of Simulink Real-Time Explorer.
Ask your system administrator
for this value.

For example, your subnet mask
could be 255.255.255.0.

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of Simulink
Real-Time Explorer. Ask your
system administrator for this
value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and 'USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of Simulink
Real-Time Explorer. This
property is set by default to PCI,
and determines the bus type of
your target computer. You do not
need to define a bus type for your
host computer, which can be the

1-5

getxpcenv

Environment Property Description

same or different from the bus
type in your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver Property values are '3C90x',
'I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
Simulink Real-Time Explorer.

1-6

getxpcenv

Environment Property Description

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of Simulink Real-Time
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

1-7

getxpcenv

Environment Property Description

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of Simulink
Real-Time Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater
than 20000 in the Port box in
the Target Properties pane of
Simulink Real-Time Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area

1-8

getxpcenv

Environment Property Description

(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

MaxModelSize Supported property values are ’1MB’ (the default) and
’4MB’. Value ’16MB’ is not supported.

Select 1 MB or 4 MB from the Model size list in the
Target Properties pane of Simulink Real-Time
Explorer.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. Memory not used by the target

1-9

getxpcenv

Environment Property Description

application is used by the kernel and by the heap for
data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

1-10

getxpcenv

Environment Property Description

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are 'on' and 'off' (the default).

If you create a target boot kernel when ShowHardware
is 'on' and boot the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel boots with ShowHardware set.

TargetRAMSizeMB Property values are 'Auto' (the default) and 'xxx',
where xxx is a positive value specifying the amount of
RAM, in megabytes, installed on the target computer.

Under RAM size, click the Auto orManual button in
the Target Properties pane of Simulink Real-Time
Explorer. If you click Manual, enter the amount of
RAM, in megabytes, installed on the target computer
in the Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is assigned 'Auto', the target
application reads the target computer BIOS and
determines the amount of memory up to a maximum of
2 GB. If the target application cannot read the BIOS,

1-11

getxpcenv

Environment Property Description

you must select Manual mode and enter the amount of
memory, in megabytes, up to a maximum of 2 GB.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

1-12

getxpcenv

Environment Property Description

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of
Simulink Real-Time Explorer.

If your license file does not
include the license for the
Simulink Real-Time standalone
mode product, your only options
are Removable Disk, CD, DOS
Loader, and Network. With the
Simulink Real-Time standalone
mode product licensed and
installed, you have the additional
choice of Stand Alone.

Tip In the Target Properties
pane of Simulink Real-Time
Explorer, click the Create boot
disk button to create a bootable
image in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot
requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

1-13

getxpcenv

Environment Property Description

xx:xx:xx:xx:xx:xx

To update the MAC address in
Simulink Real-Time Explorer,
first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

Host Configuration

Environment Property Description

Version Simulink Real-Time version
number. Displayed only from
getxpcenv when called without
arguments.

Examples Display the Simulink Real-Time environment in the format shown
below.

getxpcenv
Simulink Real-Time Target Settings

Name : TargetPC1

TargetRAMSizeMB : Auto
MaxModelSize : 1MB

1-14

getxpcenv

SecondaryIDE : off
NonPentiumSupport : off
MulticoreSupport : on
LegacyMultiCoreConfig : off
USBSupport : on
ShowHardware : off
EthernetIndex : 0

HostTargetComm : TcpIp
TcpIpTargetAddress : 10.10.10.15
TcpIpTargetPort : 22222
TcpIpSubNetMask : 255.255.255.0
TcpIpGateway : 10.10.10.100
RS232HostPort : COM1
RS232Baudrate : 115200
TcpIpTargetDriver : Auto
TcpIpTargetBusType : PCI
TcpIpTargetISAMemPort : 0x300
TcpIpTargetISAIRQ : 5

TargetScope : Enabled

TargetBoot : NetworkBoot
TargetMACAddress : 90:e2:ba:17:5d:15

Return specific environment property value.

env = getxpcenv('HostTargetComm')
env =

'TcpIp'

See Also setxpcenv | xpcbootdisk

1-15

getxpcinfo

Purpose Retrieve diagnostic information to help troubleshoot configuration
issues (not recommended)

Syntax getxpcinfo
getxpcinfo('-a')

Arguments '-a' Appends diagnostic information to an
existing xpcinfo.txt file. If one does not
exist, this function creates the file in the
current folder.

Description getxpcinfo returns diagnostic information for troubleshooting
Simulink Real-Time configuration issues. This function generates and
saves the information in the xpcinfo.txt file, in the current folder. If
the file xpcinfo.txt already exists, this function overwrites it with
the new information.

Note Function getxpcinfo will be removed in a future release. Use
SimulinkRealTime.getSupportInfo instead.

getxpcinfo('-a') appends the diagnostic information to the
xpcinfo.txt file, in the current folder. If the file xpcinfo.txt does
not exist, this function creates it.

You can send the file xpcinfo.txt to MathWorks® Technical Support
for evaluation and guidance. To create this file, you must have write
permission for the current folder.

Warning

The file xpcinfo.txtmight contain information sensitive to your
organization. Review the contents of this file before sending
to MathWorks.

1-16

getxpcpci

Purpose Determine PCI boards installed in target computer (not recommended)

Syntax getxpcpci
getxpcpci 'all'
getxpcpci 'verbose'
getxpcpci 'supported'

pci_devices = getxpcpci
pci_devices = getxpcpci('all')
pci_devices = getxpcpci('verbose')
pci_devices = getxpcpci(target_object, ___)

pci_devices_supported = getxpcpci('supported')

Description getxpcpci without an argument queries the default target computer
for installed PCI devices (boards) that are supported by driver blocks in
the Simulink Real-Time block library.

Note Function getxpcpci will be removed in a future release. Use
SimulinkRealTime.target.getPCIInfo instead.

The call displays in the Command Window information about the PCI
devices found, including:

• PCI bus number

• Slot number

• Assigned IRQ number

• Vendor (manufacturer) name

• Device (board) name

• Device type

• Vendor PCI ID

• Device PCI ID

1-17

getxpcpci

• Device release version.

Before you can use this call, you must meet the following preconditions:

• The host-target communication link must be working. Before you can
use getxpcpci, the function xpctargetping must return success.

• Either a target application is loaded or the loader is active. Before
building the model, you can use getxpcpci to find resources to
enter into a driver block dialog box. Such resources include PCI bus
number, slot number, and assigned IRQ number.

getxpcpci 'all' displays information about all of the PCI devices
found on the default target computer. This information includes
graphics controllers, network cards, SCSI cards, and devices that are
part of the motherboard chip set (for example, PCI-to-PCI bridges).

getxpcpci 'verbose' shows the information displayed by getxpcpci
'all' for the default target computer, plus information about the PCI
addresses assigned to this board by the BIOS.

getxpcpci 'supported' displays a list of the PCI devices currently
supported by the Simulink Real-Time block library. This call does not
access the target computer, so host-target communication does not have
to be active.

pci_devices = getxpcpci without an argument queries the default
target computer for installed PCI devices (boards) that are supported by
driver blocks in the Simulink Real-Time block library. The call returns
a structure containing information about the PCI devices found.

pci_devices = getxpcpci('all') and pci_devices =
getxpcpci('verbose') both return a structure containing information
about all PCI devices found on the default target computer. This
structure includes information about the PCI addresses assigned to this
board by the BIOS.

1-18

getxpcpci

pci_devices = getxpcpci(target_object, ___) applies the option
arguments to the target computer represented by target_object.

pci_devices_supported = getxpcpci('supported') returns a
structure containing a list of PCI devices currently supported by the
Simulink Real-Time block library. This call does not access the target
computer, so host-target communication does not have to be active.

Input
Arguments

target_object - Object representing target computer
object created by xpctarget.xpc

Object representing the target computer being queried, as returned
by xpctarget.xpc.

Example: target_object = xpctarget.xpc('TargetPC1')

Data Types
function_handle

Output
Arguments

pci_devices - Information about the PCI devices in the target
computer
vector

The vector returned by getxpcpci without an argument contains
information only for those PCI devices supported by Simulink Real-Time
blocks. The vectors returned by getxpcpci with the arguments 'all'
and 'verbose' contain information about all PCI devices in the target
computer and are identical.

The fields in this structure are:

Bus - PCI bus where device resides
scalar

Bus and Slot are used together to uniquely identify the location of a
device or bus adapter in the target computer.

Slot - PCI slot where device resides
scalar

1-19

getxpcpci

Slot and Bus are used together to uniquely identify the location of a
device or bus adapter in the target computer.

VendorID - Identifier for manufacturer of the device
string

Hexadecimal numeric string containing the identifier assigned by the
PCI standards organization to the manufacturer of this device or bus
adapter.

DeviceID - Identifier for device among those manufactured by
the vendor
string

Hexadecimal numeric string containing the identifier assigned by the
manufacturer to this device or bus adapter.

SubVendorID - Identifier for manufacturer of subsystem
string

Hexadecimal numeric string containing the identifier assigned by
the PCI standards organization to the manufacturer of the entire
subsystem (board).

SubDeviceID - Identifier for subsystem among those
manufactured by the subvendor
string

Hexadecimal numeric string containing the identifier assigned by the
manufacturer to this subsystem (board).

BaseClass - Standard PCI class of the device
string

Hexadecimal numeric string containing the standard PCI base
classification of this device or bus adapter. BaseClass and SubClass
together identify the type and function of the device.

SubClass - Standard PCI subclass of the device

1-20

getxpcpci

string

Hexadecimal numeric string containing the standard PCI subclass
classification of this device or bus adapter. SubClass and BaseClass
together identify the type and function of the device.

Interrupt - IRQ used by the device
scalar

Provides the board-level interrupt used by the device or bus adapter to
trigger I/O with the target computer CPU.

BaseAddresses - Information for each Base Address Register
(BAR) used by the device
vector

For each BAR used by this device or bus adapter, the vector contains a
structure with the following fields:

AddressSpaceIndicator - Indicates whether the address is a
memory or I/O address
0 | 1

• 0 — Address is memory address

• 1 — Address is I/O address

BaseAddress - Memory address used by the device
string

Hexadecimal string containing the base memory address used by the
device.

MemoryType - Indicates the size of the address decode, 32-bit or
64-bit
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — 32-bit address decode

1-21

getxpcpci

• 1 — 64-bit address decode

Prefetchable - Indicates whether the memory is prefetchable
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — Address not prefetchable

• 1 — Address prefetchable

VendorName - Name of vendor of device
string

Identifies the vendor of the specific device or bus adapter. Set to
'Unknown' for unknown devices or bus adapters.

Release - MATLAB® release version in which driver became
available
string

If the device is supported by the Simulink Real-Time block library,
contains the MATLAB and Simulink release version in which the driver
was released. Otherwise, contains an empty vector.

Notes - Additional information about the device
string

Contains additional description of the device or bus adapter.

DeviceName - Name of device
string

Identifies the specific device or bus adapter. Set to 'Unknown' for
unknown devices or bus adapters.

DeviceType - Identifies the functions of the device
string

Contains abbreviations such as 'DI' (digital input) that indicate the
function or functions of the device or bus adapter.

1-22

getxpcpci

ADChan - Number of analog inputs
string

Decimal numeric string containing the number of analog inputs to the
device.

DAChan - Number of analog outputs
string

Decimal numeric string containing the number of analog outputs from
the device.

DIOChan - Number of digital inputs and outputs
string

Decimal numeric string containing the number of digital inputs and
outputs to and from the device.

pci_devices_supported - Information about the PCI devices
supported by the product
vector

Vector of information about the devices and bus adapters represented
by blocks in the Simulink Real-Time block library.

The fields are as follows:

VendorID - Identifier for manufacturer of the device
string

Hexadecimal numeric string containing the identifier assigned by the
PCI standards organization to the manufacturer of this device or bus
adapter.

DeviceID - Identifier for device among those manufactured by
the vendor
string

Hexadecimal numeric string containing the identifier assigned by the
manufacturer to this device or bus adapter.

1-23

getxpcpci

SubVendorID - Identifier for manufacturer of subsystem
string

Hexadecimal numeric string containing the identifier assigned by
the PCI standards organization to the manufacturer of the entire
subsystem (board).

SubDeviceID - Identifier for subsystem among those
manufactured by the subvendor
string

Hexadecimal numeric string containing the identifier assigned by the
manufacturer to this subsystem (board).

DeviceName - Name of device
string

Identifies the specific device or bus adapter. Set to 'Unknown' for
unknown devices or bus adapters.

VendorName - Name of vendor of device
string

Identifies the vendor of the specific device or bus adapter. Set to
'Unknown' for unknown devices or bus adapters.

DeviceType - Identifies the functions of the device
string

Contains abbreviations such as 'DI' (digital input) that indicate the
function or functions of the device or bus adapter.

DAChan - Number of analog outputs
string

Decimal numeric string containing the number of analog outputs from
the device.

ADChan - Number of analog inputs
string

1-24

getxpcpci

Decimal numeric string containing the number of analog inputs to the
device.

DIOChan - Number of digital inputs and outputs
string

Decimal numeric string containing the number of digital inputs and
outputs to and from the device.

Release - MATLAB release version in which driver became
available
string

If the device is supported by the Simulink Real-Time block library,
contains the MATLAB and Simulink release version in which the driver
was released. Otherwise, contains an empty vector.

Notes - Additional information about the device
string

Contains additional description of the device or bus adapter.

Examples Display information for PCI devices that are supported by
Simulink Real-Time block library on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.

xpctargetping

getxpcpci

List of installed PCI devices:

Measurement Computing PCI-DIO24
Bus 1, Slot 11, IRQ 10
DI DO
VendorID 0x1307, DeviceID 0x0028,

1-25

getxpcpci

SubVendorID 0x1307, SubDeviceID 0x0028
A/D Chan: 0, D/A Chan: 0, DIO Chan: 24
Released in: R14SP2 or Earlier

.

.

.

Display information for all PCI devices on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.

xpctargetping

getxpcpci 'all'

List of installed PCI devices:

Intel Unknown
Bus 0, Slot 0, IRQ 0
Host Bridge
VendorID 0x8086, DeviceID 0x1130,

SubVendorID 0x8086, SubDeviceID 0x4532
.
.
.
Measurement Computing PCI-DIO24

Bus 1, Slot 11, IRQ 10
DI DO
VendorID 0x1307, DeviceID 0x0028,

SubVendorID 0x1307, SubDeviceID 0x0028
A/D Chan: 0, D/A Chan: 0, DIO Chan: 24
Released in: R14SP2 or Earlier

.

.

.

1-26

getxpcpci

Display verbose information for all PCI devices on default
computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.

xpctargetping

getxpcpci 'verbose'

List of installed PCI devices:

Intel Unknown
Bus 0, Slot 0, IRQ 0
Host Bridge
VendorID 0x8086, DeviceID 0x1130,

SubVendorID 0x8086, SubDeviceID 0x4532
BaseClass 6, SubClass 0
BAR BaseAddress AddressSpace MemoryType PreFetchable
0) E8000000 Memory 32-bit decoder no

.

.

.
Measurement Computing PCI-DIO24

Bus 1, Slot 11, IRQ 10
DI DO
VendorID 0x1307, DeviceID 0x0028,

SubVendorID 0x1307, SubDeviceID 0x0028
A/D Chan: 0, D/A Chan: 0, DIO Chan: 24
Released in: R14SP2 or Earlier
BaseClass FF, SubClass FF
BAR BaseAddress AddressSpace
1) DC00 I/O
2) DFF4 I/O

.

.

.

1-27

getxpcpci

Display all PCI devices supported by Simulink Real-Time
block library

At the MATLAB prompt, type the command on the host computer.

getxpcpci 'supported'

List of supported PCI devices:

Vendor Device Type . . .

ADDI-DATA APCI-1710 Inc. Encoder . . .
ADLINK PCI-6208A AO DI DO . . .
.
.
.
Speedgoat IO321 (PMC-FPGA) AI (IO321-5) . . .
Speedgoat IO331 (PMC-FPGA) DI DO (LVDS/LVCMOS) . . .

Return information for PCI devices that are supported by
Simulink Real-Time block library on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.
Display the first structure in the vector.

xpctargetping

pci_devices=getxpcpci;
pci_devices(1)

ans =

Bus: 1
Slot: 11

VendorID: '1307'
DeviceID: '28'

SubVendorID: '1307'

1-28

getxpcpci

SubDeviceID: '28'
BaseClass: 'FF'
SubClass: 'FF'

Interrupt: 10
BaseAddresses: [1x6 struct]

VendorName: 'Measurement Computing'
Release: 'R14SP2 or Earlier'

Notes: ''
DeviceName: 'PCI-DIO24'
DeviceType: 'DI DO'

ADChan: '0'
DAChan: '0'

DIOChan: '24'

Return information for all PCI devices on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.
Display the first structure in the vector.

xpctargetping

pci_devices=getxpcpci('all');
pci_devices(1)

ans =

Bus: 0
Slot: 0

VendorID: '8086'
DeviceID: '1130'

SubVendorID: '8086'
SubDeviceID: '4532'

BaseClass: '6'
SubClass: '0'

Interrupt: 0

1-29

getxpcpci

BaseAddresses: [1x6 struct]
VendorName: 'Intel'

Release: ''
Notes: ''

DeviceName: 'Unknown'
DeviceType: 'Host Bridge'

ADChan: ''
DAChan: ''

DIOChan: ''

Return verbose information for all PCI devices via
target_object

Start the default target computer with the Simulink Real-Time kernel.
Get the target_object using xpctarget.xpc. Verify the connection
between the host and the target computer. At the MATLAB prompt,
type the command on the host computer. Display the first structure in
the vector.

target_object=xpctarget.xpc('XPCLABTGT4');
target_object.targetping

pci_devices=getxpcpci(target_object,'verbose');
pci_devices(1)

ans =

Bus: 0
Slot: 0

VendorID: '8086'
DeviceID: '1130'

SubVendorID: '8086'
SubDeviceID: '4532'

BaseClass: '6'
SubClass: '0'

Interrupt: 0
BaseAddresses: [1x6 struct]

1-30

getxpcpci

VendorName: 'Intel'
Release: ''

Notes: ''
DeviceName: 'Unknown'
DeviceType: 'Host Bridge'

ADChan: ''
DAChan: ''

DIOChan: ''

Return all PCI devices supported by Simulink Real-Time
block library

At the MATLAB prompt, type the command on the host computer.

pci_devices_supported=getxpcpci('supported');
pci_devices_supported(1)

ans =

VendorID: '10e8'
DeviceID: '818f'

SubVendorID: '-1'
SubDeviceID: '-1'
DeviceName: 'APCI-1710'
VendorName: 'ADDI-DATA'
DeviceType: 'Inc. Encoder'

DAChan: '0'
ADChan: '0'

DIOChan: '0'
Release: 'R14SP2 or Earlier'

Notes: ''

Related
Examples

• “Where to Find PCI Board Information”
• “Command-Line Ethernet Card Selection by Index”

Concepts • “PCI Bus I/O Devices”

1-31

readxpcfile

Purpose Read real-time Scope file format data (not recommended)

Syntax matlab_data = readxpcfile(xpcfile_name)
matlab_data = readxpcfile(xpcfile_data)

Description matlab_data = readxpcfile(xpcfile_name) takes as an argument
the name of a host computer file containing a vector of byte data
(uint8). The file is copied from the target computer using xpctarget.ftp
Class methods.

Note Function readxpcfile will be removed in a future release. Use
SimulinkRealTime.utils.getFileScopeData instead.

matlab_data = readxpcfile(xpcfile_data) takes as an argument a
MATLAB variable containing a vector of byte data (uint8). The data is
read from the target computer using xpctarget.fs Class methods.

Input
Arguments

xpcfile_name - Name of file from which to read real-time Scope
file format data
'data.dat'

File must contain a vector of uint8 data.

Data Types
char

xpcfile_data - Workspace variable containing real-time Scope
file format data
vector

Data Types
uint8

1-32

readxpcfile

Output
Arguments

matlab_data - State and time data for plotting
structure

The state and time data is stored in a structure containing six fields.
The key fields are numSignals, data, and signalNames.

version - Version code
0 (default) | double

Internal

sector - Sector of data file
0 (default) | double

Internal

headersize - Number of bytes of data file header
512 (default) | double

Internal

numSignals - Number of columns containing signal and time
data
double

If N signals are connected to the real-time Scope block, numSignals =
N + 1.

data - Columns containing signal and time data
double array

The data array contains numSignals columns. The first N columns
represent signal state data. The last column contains the time at which
the state data is captured.

The data array contains as many rows as there are data points.

signalNames - Names of columns containing signal and time
data
cell vector

1-33

readxpcfile

The signalNames vector contains numSignals elements. The first N
elements are signal names. The last element is the string Time.

Examples These examples access a file on a target computer using different
methods and plot the results. The model includes one scalar signal
connected to a real-time Scope block of type File. The model has been
built, downloaded, and run, producing file 'data.dat' on the target
computer.

Using xpcfile_name argument to read file and plot results

Upload the file using xpctarget.ftp Class methods. Read the file on
the host using readxpcfile. Plot the results.

Upload file 'data.dat' from the target computer.

xpcftp=xpctarget.ftp;
xpcftp.get('data.dat');

Read the file and process its data into MATLAB format.

matlab_data=readxpcfile('data.dat');

Plot the signal data (column 1) on the Y axis against time (column 2) on
the X axis.

plot(matlab_data.data(:,2), matlab_data.data(:,1));
xlabel(matlab_data.signalNames(2));
ylabel(matlab_data.signalNames(1));

Using xpcfile_data argument to store data, convert to
MATLAB format, and plot results

Read the file on the target computer using xpctarget.fs Class
methods. Store the data in a workspace variable. Convert the data to
MATLAB format using readxpcfile. Plot the results.

Read file 'data.dat' from the target computer.

f=xpctarget.fs;

1-34

readxpcfile

h=f.fopen('data.dat');
xpcfile_data=f.fread(h);
f.fclose(h);

Process data from the workspace variable into MATLAB format.

matlab_data=readxpcfile(xpcfile_data);

Plot the signal data (column 1) on the Y axis against time (column 2) on
the X axis.

plot(matlab_data.data(:,2), matlab_data.data(:,1));
xlabel(matlab_data.signalNames(2));
ylabel(matlab_data.signalNames(1));

See Also Scope | xpctarget.ftp Class | xpctarget.fs Class

1-35

setxpcenv

Purpose Change Simulink Real-Time environment properties (not recommended)

Syntax setxpcenv
setxpcenv('property_name','property_value')
setxpcenv('prop_name1','prop_value1','prop_name2',. . .)

Arguments property_name Not case sensitive. Property names can be
shortened as long as they can be differentiated
from the other property names.

property_value Character string. Type setxpcenv without
arguments to get a listing of allowed values.
Property values are not case sensitive.

Description Function to enter new values for environment properties. If the new
value is different from the current value, the property is marked as
having a new value. setxpcenv works similarly to the set function of
the MATLAB Handle Graphics® system.

Note Command setxpcenv will be removed in a future release. Use
SimulinkRealTime.targetSettings.set instead.

setxpcenv called without arguments returns a list of allowed property
values in the MATLAB window.

setxpcenv('property_name','property_value') sets property
property_name to property_value.

setxpcenv('prop_name1','prop_value1','prop_name2',. . .)
is called with one or more argument pairs. The first argument of a pair
is the property name; the second is the new value for this property.

The environment properties define communication between the host
computer and target computer and the type of target boot kernel created
during the setup process. With the exception of the Version property,

1-36

setxpcenv

you can set environment properties using the setxpcenv function or
the Simulink Real-Time Explorer window, accessed via the xpcexplr
function. An understanding of the environment properties will help you
configure the Simulink Real-Time environment.

Tip To access a subset of these properties in Simulink Real-Time
Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 1-37

• “Target Settings” on page 1-43

• “Boot Configuration” on page 1-47

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in
the Target Properties pane of
Simulink Real-Time Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

1-37

setxpcenv

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of
Simulink Real-Time Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of Simulink
Real-Time Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

1-38

setxpcenv

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane of
Simulink Real-Time Explorer.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box
in the Target Properties pane
of Simulink Real-Time Explorer.
Ask your system administrator
for this value.

For example, your subnet mask
could be 255.255.255.0.

1-39

setxpcenv

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of Simulink
Real-Time Explorer. Ask your
system administrator for this
value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and 'USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of Simulink
Real-Time Explorer. This
property is set by default to PCI,
and determines the bus type of
your target computer. You do not
need to define a bus type for your
host computer, which can be the
same or different from the bus
type in your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values

1-40

setxpcenv

Environment Property Description

for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver Property values are '3C90x',
'I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
Simulink Real-Time Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of Simulink Real-Time
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

1-41

setxpcenv

Environment Property Description

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of Simulink
Real-Time Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the

1-42

setxpcenv

Environment Property Description

corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater
than 20000 in the Port box in
the Target Properties pane of
Simulink Real-Time Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

1-43

setxpcenv

Environment Property Description

MaxModelSize Supported property values are ’1MB’ (the default) and
’4MB’. Value ’16MB’ is not supported.

Select 1 MB or 4 MB from the Model size list in the
Target Properties pane of Simulink Real-Time
Explorer.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. Memory not used by the target
application is used by the kernel and by the heap for
data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

1-44

setxpcenv

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are 'on' and 'off' (the default).

If you create a target boot kernel when ShowHardware
is 'on' and boot the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel boots with ShowHardware set.

1-45

setxpcenv

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'xxx',
where xxx is a positive value specifying the amount of
RAM, in megabytes, installed on the target computer.

Under RAM size, click the Auto orManual button in
the Target Properties pane of Simulink Real-Time
Explorer. If you click Manual, enter the amount of
RAM, in megabytes, installed on the target computer
in the Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is assigned 'Auto', the target
application reads the target computer BIOS and
determines the amount of memory up to a maximum of
2 GB. If the target application cannot read the BIOS,
you must select Manual mode and enter the amount of
memory, in megabytes, up to a maximum of 2 GB.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

1-46

setxpcenv

Environment Property Description

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of
Simulink Real-Time Explorer.

If your license file does not
include the license for the
Simulink Real-Time standalone

1-47

setxpcenv

Environment Property Description

mode product, your only options
are Removable Disk, CD, DOS
Loader, and Network. With the
Simulink Real-Time standalone
mode product licensed and
installed, you have the additional
choice of Stand Alone.

Tip In the Target Properties
pane of Simulink Real-Time
Explorer, click the Create boot
disk button to create a bootable
image in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot
requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address in
Simulink Real-Time Explorer,
first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the

1-48

setxpcenv

Environment Property Description

MAC address automatically the
next time you restart the target
computer.

Examples List the current environment properties.

setxpcenv

Change the serial communication port of the host computer to COM2.

setxpcenv('RS232HostPort','COM2')

See Also getxpcenv | xpcbootdisk

How To • “Ethernet Communication Setup”

• “RS-232 Communication Setup”

• “Target Boot Methods”

• “Command-Line Setup”

1-49

xpcbench

Purpose Benchmark Simulink Real-Time models on target computer

Syntax xpcbench
xpcbench benchmark
xpcbench benchmark -reboot
xpcbench benchmark -cleanup
xpcbench benchmark -verbose
xpcbench benchmark -reboot -cleanup -verbose

expected_results = xpcbench()
current_results = xpcbench(benchmark, ___)

Description xpcbench benchmarks the real-time execution performance of Simulink
Real-Time applications on your target computer. It compares the result
to stored benchmark results from other computers.

Note Function xpcbench will be removed in a future release. Use
slrtbench instead.

Benchmark execution includes generating benchmark models, building
and downloading Simulink Real-Time applications, searching for the
minimal achievable sample time, and displaying results.

xpcbench without an argument displays representative results for
benchmarks run on various target computers with various compiler
versions. Display includes:

• Relative Performance — Bar graph containing the computers tested,
ranked by relative performance.

• Minimal achievable sample times in µs — Table containing, for each
target computer tested, the minimal achievable sample time for the
benchmarks, in microseconds.

• Target Information — Technical information about the target
computers benchmarked.

1-50

xpcbench

Depending upon the value of benchmark, xpcbench benchmark produces
different outputs:

• xpcbench this displays benchmark results your target computer,
compared with the representative benchmark results for other target
computers:

- Relative Performance — Bar graph containing the computers
tested, ranked by relative performance.

- Minimal achievable sample times in µs — Table containing, for
each target computer tested, the minimal achievable sample time
for the benchmarks, in microseconds.

- Target Information — Technical information about the target
computers benchmarked.

The entry for your target computer is highlighted.

• xpcbench benchmark prints the benchmark name, the number
of blocks, the model build time in seconds, the execution time in
seconds, and the minimal achievable sample time in microseconds in
the Command Window.

xpcbench benchmark -reboot runs the benchmark, then restarts the
target computer.

xpcbench benchmark -cleanup runs the benchmark, plots or prints
benchmark results, and deletes the build files.

xpcbench benchmark -verbose prints build output, runs the
benchmark, and plots or prints benchmark results.

xpcbench benchmark -reboot -cleanup -verbose prints build
output, restarts the target computer, deletes build files, and plots or
prints results.

You can add zero or more of these control arguments in arbitrary order.

expected_results = xpcbench() returns the benchmark results for
the five predefined benchmarks in a structure array.

1-51

xpcbench

Depending upon the value of benchmark, current_results =
xpcbench(benchmark, ___) returns different results:

• xpcbench('this') returns the benchmark results for the predefined
benchmarks in a structure array.

• xpcbench(benchmark) returns the benchmark results for the
specified model in a structure.

Input
Arguments

benchmark - Benchmark name or model name
this | usermdl | minimal | f14 | f14*5 | f14*10 | f14*25 | f14*100

Benchmark, specified as a literal string or string variable containing
one of:

this All five predefined benchmark
models (minimal, f14, f14*5,
f14*10, f14*25)

usermdl Your model, usermdl.

minimal Minimal model consisting of
three blocks (Constant, Gain,
Termination).

f14 Standard Simulink example f14
(62 blocks, 10 continuous states).

f14*5 Five f14 systems modeled in
subsystems (310 blocks, 50
continuous states).

f14*10 Ten f14 systems (620 blocks, 100
continuous states).

f14*25 25 f14 systems (1550 blocks, 250
continuous states).

f14*100 100 f14 systems (6200 blocks,
1000continuous states).

1-52

xpcbench

When using function form, enclose literal arguments (this, -reboot) in
single quotes ('this','-reboot').

Example:

Data Types
char

Output
Arguments

expected_results - Results of predefined benchmarks previously
run on representative target computers
struct array

Contains representative benchmark results in a structure array with
element fields:

Machine Target computer information
string containing CPU type, CPU
speed, compiler

BenchResults Target computer benchmark
performance for all five
predefined benchmarks

Desc Target computer descriptor string
containing machine type, RAM
size, cache size

current_results - Current results of specified benchmark
struct

Contains actual benchmark results in a structure with fields:

Name Benchmark name

nBlocks Number of blocks in benchmark

BuildTime Elapsed time in seconds to build
benchmark

1-53

xpcbench

BenchTime Elapsed time in seconds to run
benchmark

Tsmin Minimal achievable sample time
in seconds for benchmark

Tips • Before you run xpcbench, you must be able to start the target
computer, connect the host computer to the target computer, and run
the confidence test, slrttest, with no failures.

• After running xpcbench on your model and system, set your model
sample time to the minimal achievable sample time value reported.
Smaller sample times overload the target computer.

• The stored benchmark results were collected with Multicore CPU
support disabled. When evaluating your system, temporarily
disable this target setting using slrtexplr.

• The stored benchmark models were compiled using a sampling of the
supported compilers. When evaluating your system, find the closest
match to the compiler that you are using.

• Benchmark minimal has neither continuous nor discrete states. It
provides information about the target computer interrupt latencies.

Examples xpcbench

Show representative benchmark results from various target computers.

Start the target computer and run confidence test.

slrttest

Display representative results on predefined benchmarks.

xpcbench

1-54

xpcbench

1-55

xpcbench

xpcbench this

Benchmark the target computer with the predefined benchmarks.

Start the target computer and run confidence test.

slrttest

Run the benchmark models and display results.

xpcbench this

Starting Simulink Real-Time build procedure
for model: xpcminimal

Successful completion of build procedure for model: xpcminimal
Looking for target: TargetPC1
Download model onto target: TargetPC1

Running benchmark for model: xpcminimal
.
.
.
Running benchmark for model: f14tmp1
.
.
.
Running benchmark for model: f14tmp5
.
.
.
Running benchmark for model: f14tmp10
.
.
.
Running benchmark for model: f14tmp25
.
.
.

1-56

xpcbench

Running benchmark for model: f14tmp100

1-57

xpcbench

1-58

xpcbench

xpcbench this -verbose -reboot -cleanup

Benchmark the target computer with the predefined benchmarks, and
then delete build files.

Start the target computer and run confidence test.

slrttest

Run the benchmark models, delete build files, and display results.

xpcbench this -verbose -reboot -cleanup

Starting Simulink Real-Time build procedure
for model: xpcminimal

Generating code into build folder: xpcminimal_xpc_rtw
Invoking Target Language Compiler on xpcminimal.rtw
.
.
.
Successful completion of build procedure for model:

xpcminimal
Looking for target: TargetPC1
Download model onto target: TargetPC1
Create SimulinkRealTime.target object tg
Target: TargetPC1

Connected = Yes
.
.
.
Running benchmark for model: xpcminimal
Reboot target: TargetPC1........ OK.
.
.
Running benchmark for model: f14tmp1
Reboot target: TargetPC1........ OK.
.
.

1-59

xpcbench

.
Running benchmark for model: f14tmp5
Reboot target: TargetPC1........ OK.
.
.
.
Running benchmark for model: f14tmp10
Reboot target: TargetPC1........ OK.
.
.
.
Running benchmark for model: f14tmp25
Reboot target: TargetPC1........ OK.
.
.
.
Running benchmark for model: f14tmp100
Reboot target: TargetPC1........ OK.

1-60

xpcbench

1-61

xpcbench

xpcbench xpcosc

Use model xpcosc to benchmark the target computer, then clean up
build files

Start the target computer and run confidence test.

slrttest

Run benchmark on xpcosc, delete build files, and print results.

xpcbench xpcosc

Starting Simulink Real-Time build procedure
for model: xpcosc
Successful completion of build procedure for model: xpcosc
Looking for target: TargetPC1
Download model onto target: TargetPC1

Running benchmark for model: xpcosc

Benchmark results for model: xpcosc
Number of blocks in model: 10
Elapsed time for model build (sec): 33.4
Elapsed time for model benchmark (sec): 236.7
Minimal achievable sample time (microsec): 12.4

xpcbench xpcosc --verbose -reboot -cleanup

Use model xpcosc to benchmark the target computer, then clean up
build files

Start the target computer and run confidence test.

slrttest

Run benchmark on xpcosc, delete build files, and print results.

xpcbench xpcosc -verbose -reboot -cleanup

1-62

xpcbench

Starting Simulink Real-Time build procedure
for model: xpcosc
Generating code into build folder: xpcosc_slrt_rtw
Invoking Target Language Compiler on xpcosc.rtw
.
.
.
Successful completion of build procedure for model: xpcosc
Looking for target: TargetPC1
Download model onto target: TargetPC1
Create SimulinkRealTime.target object tg
Target: TargetPC1

Connected = Yes
.
.
.

Running benchmark for model: xpcosc
Reboot target: TargetPC1........ OK

Benchmark results for model: xpcosc
Number of blocks in model: 10
Elapsed time for model build (sec): 29.4
Elapsed time for model benchmark (sec): 210.5
Minimal achievable sample time (microsec): 10.9

expected_results = xpcbench()

Return a structure array containing benchmark results showing what
to expect of various target computers.

Start the target computer and run confidence test.

slrttest

Return an array with representative results for each processor type,
in arbitrary order.

1-63

xpcbench

expected_results = xpcbench();
expected_results(1)

ans =

Machine: 'Generic Intel(R) Core(TM) 2 Quad (VisualC 10.0)'
BenchResults: [1.2359e-05 1.3184e-05 1.5623e-05 1.8978e-05

3.1175e-05 1.2723e-04]
Desc: '% Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

% RAM: 2044MB
% CP...'

1-64

xpcbench

1-65

xpcbench

current_results =
xpcbench(’xpcosc’,’-verbose’,’-reboot’,’-cleanup’)

Benchmark the target computer using the xpcosc model and all control
options, and return a structure array with results.

Start the target computer and run confidence test.

slrttest

Build 'xpcosc', print build messages, run benchmark, delete build
files, restart the target computer, and return results.

current_results = xpcbench('xpcosc','-verbose','-reboot',
'-cleanup')

Starting Simulink Real-Time build procedure
for model: xpcosc
Generating code into build folder: xpcosc_slrt_rtw
Generated code for 'xpcosc' is up to date because no

structural, parameter or code replacement library
changes were found.

.

.

.
Successful completion of build procedure for model: xpcosc
Looking for target: TargetPC1
Download model onto target: TargetPC1
Create SimulinkRealTime.target object tg
Target: TargetPC1

Connected = Yes
.
.
.
Running benchmark for model: xpcosc
Reboot target: TargetPC1......... OK

Benchmark results for model: xpcosc

1-66

xpcbench

Number of blocks in model: 10
Elapsed time for model build (sec): 14.5
Elapsed time for model benchmark (sec): 200.5
Minimal achievable sample time (microsec): 11.9

current_results =

Name: 'xpcosc'
nBlocks: 10

BuildTime: 14.4840
BenchTime: 200.4516

Tsmin: 1.1875e-05

See Also slrttest

External
Web Sites

• http://www.mathworks.com/support/compilers/current_release/

1-67

http://www.mathworks.com/support/compilers/current_release/

xpcbootdisk

Purpose Create Simulink Real-Time boot disk or DOS Loader files and confirm
current environment properties (not recommended)

Syntax xpcbootdisk

Description xpcbootdisk creates an Simulink Real-Time boot floppy, CD or DVD
boot image, network boot image, or DOS Loader files for the current
Simulink Real-Time environment. Use the setxpcenv function to set
environment properties.

Note Command xpcbootdisk will be removed in a future release. Use
SimulinkRealTime.createBootImage instead.

What xpcbootdisk does depends upon the value of the TargetBoot
property.

• BootFloppy — To create a boot floppy disk, the software prompts
you to insert an empty formatted disk into the drive. The software
writes the kernel image onto the disk and displays a summary of
the creation process.

• CDBoot — To create a CD or DVD boot disk, the software prompts
you to insert an empty formatted CD or DVD into the drive. The
software writes the kernel image onto the CD or DVD and displays a
summary of the creation process.

• NetworkBoot— To create a network boot image, the software starts
the network boot server process.

• DOSLoader— To create DOS Loader files, the software writes kernel
image and DOS Loader files into a designated location on the host
computer. You can then copy the files to the target computer hard
drive, to a floppy disk, or to a flash drive.

• StandAlone— To create files for a standalone application, you must
separately compile and download a combined kernel and target

1-68

xpcbootdisk

application. SimulinkRealTime.createBootImage does not generate
a standalone application.

If you update the environment, you need to update the target boot
floppy, CD boot image, network boot image, or DOS Loader files for the
new Simulink Real-Time environment with the function xpcbootdisk.

Examples To create a boot floppy disk, in the MATLAB window, type:

xpcbootdisk

See Also setxpcenv | getxpcenv | xpcnetboot

How To • “Target Boot Methods”

• “Command-Line Target Boot Methods”

1-69

xpcbytes2file

Purpose Generate file suitable for use by real-time From File block (not
recommended)

Syntax xpcbytes2file(filename,var1,. . .,varn)

Arguments
filename Name of the data file from which the From File

block distributes data.

var1,. .
.,varn

Column of data to be output to the model.

Description xpcbytes2file(filename,var1,. . .,varn) outputs one column
of var1, . . .,varn from file filename at every time step. All
variables must have the same number of columns; the number of rows
and data types can differ.

Note Command xpcbytes2file will be removed in a future release.
Use SimulinkRealTime.utils.bytes2file instead.

If the data is organized such that a row refers to a single time step and
not a column. pass to xpcbytes2file the transpose of the variable. To
optimize file writes, organize the data in columns.

Examples In the following example, to use the real-time From File block to output
a variable errorval (single precision, scalar) and velocity (double,
width 3) at every time step, you can generate the file with the command:

xpcbytes2file('myfile', errorval, velocity)

where errorval has class 'single' and dimensions [1 x N] and
velocity has class 'double' and dimensions [3 x N].

Set up the real-time From File block to output

28 bytes

1-70

xpcbytes2file

(1 * sizeof('single') + 3 * sizeof('double'))

at every sample time.

1-71

xpcexplr

Purpose Configure target computer and target application for execution (not
recommended)

Syntax xpcexplr

Description Typing xpcexplr at the MATLAB command prompt opens Simulink
Real-Time Explorer.

Note Command xpcexplr will be removed in a future release. Use
slrtexplr instead.

Simulink Real-Time Explorer includes the following capabilities:

• Environment configuration — Use the Simulink Real-Time Explorer
Target Properties pane to configure the Simulink Real-Time
environment properties and create an Simulink Real-Time bootable
image.

Use node File system under theMATLAB Session tree to browse
the target computer file system.

• Control — Use the Simulink Real-Time Explorer Targets and
Applications panes to load, unload, and run target applications. You
can change stop time and sample times without regenerating code,
and get task execution time information during or after the last run.

• Signal acquisition — Use the Simulink Real-Time Explorer Scopes
pane and the Model Hierarchy node in the Applications pane to
interactively monitor signals, add host, target, or file scopes, add or
remove signals, and save and load signal groups.

• Parameter tuning — Use the Simulink Real-Time Explorer Model
Hierarchy node in the Applications pane to change tunable
parameters in your target application and save and load parameter
groups.

1-72

xpcexplr

• Window configuration — Use the tab and the icon to make
multiple workspaces visible at the same time.

Use File > Save Layout and Load Layout to save and restore the
Simulink Real-Time Explorer window layout.

Examples Default

Open Simulink Real-Time Explorer

xpcexplr

1-73

xpcexplr

Related
Examples

• “Ethernet Communication Setup”
• “RS-232 Communication Setup”
• “Target Computer Settings”
• “Target Boot Methods”
• “Execute Target Application Using Simulink Real-Time Explorer”
• “Monitor Signals Using Simulink Real-Time Explorer”
• “Create Target Scopes Using Simulink Real-Time Explorer”

1-74

xpcexplr

• “Create Host Scopes Using Simulink Real-Time Explorer”
• “Create File Scopes Using Simulink Real-Time Explorer”
• “Tune Parameters Using Simulink Real-Time Explorer”

1-75

xpcgetCC

Purpose Compiler settings for Simulink Real-Time environment (not
recommended)

Syntax type = xpcgetCC
type = xpcgetCC('Type')
[type, location] = xpcgetCC
location= xpcgetCC('Location')
xpcgetCC('supported')
xpcgetCC('installed')
[compilers] = xpcgetCC('installed')

Description type = xpcgetCC and type = xpcgetCC('Type') return the compiler
type in type.

Note Function xpcgetCC will be removed in a future release. Use
slrtgetCC instead.

[type, location] = xpcgetCC returns the compiler type and its
location in type and location.

location= xpcgetCC('Location') returns the compiler location in
location.

xpcgetCC('supported') lists supported compiler versions for the
Simulink Real-Time environment.

xpcgetCC('installed') lists the Simulink Real-Time supported
compilers installed on the current host computer

[compilers] = xpcgetCC('installed') returns the Simulink
Real-Time supported compilers installed on the current host computer
in a structure.

The mex -setup command sets the default compiler for Simulink
Real-Time builds, provided the MEX compiler is a supported Microsoft®

compiler. The slrtgetCC function returns the result of the slrtsetCC
command only, not the result of the mex command. If xpcgetCC returns

1-76

xpcgetCC

an empty string as location, Simulink Real-Time uses the MEX
compiler.

Examples Return the compiler type.

type = xpcgetCC

Return the compiler type and compiler location.

[type, location] = xpcgetCC

Return the Simulink Real-Time supported compilers installed on the
current host computer in a structure and access the structure fields

[compilers] = xpcgetCC('installed')

compilers =

1x3 struct array with fields:
Type
Name
Location

compilers.Type

ans =

VisualC

See Also xpcsetCC

1-77

xpcnetboot

Purpose Create kernel to boot target computer over dedicated network (not
recommended)

Syntax xpcnetboot
xpcnetboot targetPCname

Arguments targetPCName Target computer name as identified in Simulink
Real-Time Explorer.

Description xpcnetboot creates an Simulink Real-Time kernel from which a target
computer within the same network can start.

Note Command xpcnetboot will be removed in a future release. Use
SimulinkRealTime.createBootImage instead.

xpcnetboot starts the following services as server processes:

• Bootstrap protocol (bootp) — xpcbootpserver.exe

• Trivial file transfer protocol (tftp) — xpctftpserver.exe

These processes respond to network boot requests from the target
computer.

xpcnetboot without an argument creates a kernel for the default target
computer (as identified in Simulink Real-Time Explorer).

xpcnetboot targetPCname creates an Simulink Real-Time kernel and
waits for a request from the target computer named targetPCname (as
identified in Simulink Real-Time Explorer).

Examples In the following example, xpcnetboot creates an Simulink Real-Time
kernel and waits for a request from the target computer, TargetPC1.

xpcnetboot TargetPC1

1-78

xpcsetCC

Purpose Compiler settings for Simulink Real-Time environment (not
recommended)

Syntax xpcsetCC('setup')
xpcsetCC('location')
xpcsetCC('type')
xpcsetCC(type,location)

Description xpcsetCC('setup') queries the host computer for installed C compilers
that the Simulink Real-Time environment supports. You can then
select the C compiler.

Note Command xpcsetCC will be removed in a future release. Use
slrtsetCC instead.

xpcsetCC('location') sets the compiler location.

xpcsetCC('type') sets the compiler type. 'type' must be VISUALC,
representing the Microsoft Visual Studio® C compiler.

xpcsetCC(type,location) sets the compiler type and location.

The command mex -setup sets the default compiler for Simulink
Real-Time builds, provided the MEX compiler is a supported Microsoft
compiler. Use xpcsetCC -setup only if you need to specify different
compilers for MEX and Simulink Real-Time.

To return to the default compiler from a setting by xpcsetCC, type
xpcsetCC('VisualC',''), setting the compiler location to the empty
string.

See Also xpcgetCC

How To • “Command-Line C Compiler Configuration”

1-79

xpctarget Package

Purpose Package for Simulink Real-Time MATLAB classes (not recommended)

Description Use xpctarget package objects to access the MATLAB command line
capabilities.

Note Package xpctarget will be removed in a future release. Use
package SimulinkRealTime methods instead.

Functions

Assign these object creation functions to a MATLAB variable to get
access to the properties and methods of the class.

Function Description

xpctarget.fs Create file system object

xpctarget.ftp Create file transfer protocol (FTP) object

xpctarget.targets Create container object to manage target computer
environment collection objects

xpctarget.xpc Create target object representing target application

1-80

xpctarget.env Class

Purpose Stores target environment properties (not recommended)

Description Each xpctarget.env Class object contains the environment properties
for a particular target computer. A collection of these objects is
stored in an xpctarget.targets Class object. An individual object
in a collection is accessed via the xpctarget.targets.Item (env
collection object) method.

Note Class xpctarget.env will be removed in a future release. Use
classSimulinkRealTime.targetSettings instead.

Methods

Method Description

xpctarget.env.get
(env object)

Return property values for an environment object

xpctarget.env.set
(env object)

Change property values for an environment object

1-81

xpctarget.env Class

Properties

The environment properties define communication between the host
computer and target computer and the type of target boot floppy
created during the setup process. An understanding of the environment
properties will help you configure the Simulink Real-Time environment.

Tip To access a subset of these properties in Simulink Real-Time
Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• Host-to-Target Communication on page 82

• Target Settings on page 88

• Boot Configuration on page 92

Host-to-Target Communication
Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in
the Target Properties pane of
Simulink Real-Time Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

1-82

xpctarget.env Class

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of
Simulink Real-Time Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of Simulink
Real-Time Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

1-83

xpctarget.env Class

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane of
Simulink Real-Time Explorer.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box
in the Target Properties pane
of Simulink Real-Time Explorer.
Ask your system administrator
for this value.

For example, your subnet mask
could be 255.255.255.0.

1-84

xpctarget.env Class

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of Simulink
Real-Time Explorer. Ask your
system administrator for this
value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and 'USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of Simulink
Real-Time Explorer. This
property is set by default to PCI,
and determines the bus type of
your target computer. You do not
need to define a bus type for your
host computer, which can be the
same or different from the bus
type in your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values

1-85

xpctarget.env Class

Environment Property Description

for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver Property values are '3C90x',
'I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
Simulink Real-Time Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of Simulink Real-Time
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

1-86

xpctarget.env Class

Environment Property Description

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of Simulink
Real-Time Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the

1-87

xpctarget.env Class

Environment Property Description

corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater
than 20000 in the Port box in
the Target Properties pane of
Simulink Real-Time Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings
Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

1-88

xpctarget.env Class

Environment Property Description

MaxModelSize Supported property values are ’1MB’ (the default) and
’4MB’. Value ’16MB’ is not supported.

Select 1 MB or 4 MB from the Model size list in the
Target Properties pane of Simulink Real-Time
Explorer.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. Memory not used by the target
application is used by the kernel and by the heap for
data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

1-89

xpctarget.env Class

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are 'on' and 'off' (the default).

If you create a target boot kernel when ShowHardware
is 'on' and boot the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel boots with ShowHardware set.

1-90

xpctarget.env Class

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'xxx',
where xxx is a positive value specifying the amount of
RAM, in megabytes, installed on the target computer.

Under RAM size, click the Auto orManual button in
the Target Properties pane of Simulink Real-Time
Explorer. If you click Manual, enter the amount of
RAM, in megabytes, installed on the target computer
in the Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is assigned 'Auto', the target
application reads the target computer BIOS and
determines the amount of memory up to a maximum of
2 GB. If the target application cannot read the BIOS,
you must select Manual mode and enter the amount of
memory, in megabytes, up to a maximum of 2 GB.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

1-91

xpctarget.env Class

Environment Property Description

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration
Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of
Simulink Real-Time Explorer.

If your license file does not
include the license for the
Simulink Real-Time standalone
mode product, your only options

1-92

xpctarget.env Class

Environment Property Description

are Removable Disk, CD, DOS
Loader, and Network. With the
Simulink Real-Time standalone
mode product licensed and
installed, you have the additional
choice of Stand Alone.

Tip In the Target Properties
pane of Simulink Real-Time
Explorer, click the Create boot
disk button to create a bootable
image in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot
requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address in
Simulink Real-Time Explorer,
first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the

1-93

xpctarget.env Class

Environment Property Description

next time you restart the target
computer.

1-94

xpctarget.env.get (env object)

Purpose Return target environment property values (not recommended)

Syntax property_value = env_object.property_name
property_value = env_object.get('property_name')
property_value = get(env_object,'property_name')
property_value = env_object.get
property_value = get(env_object)

Arguments env_object Name of a target environment object.

property_name Name of a target environment object property.

Description property_value = env_object.property_name gets the current value
of property property_name from target environment object env_object.

Note Method xpctarget.env.get (env object) will be removed in a
future release. Use SimulinkRealTime.getTargetSettings instead.

Alternative syntaxes are:

property_value = env_object.get('property_name')

property_value = get(env_object,'property_name')

property_value = env_object.get gets the values of all properties of
target environment object env_object. An alternative syntax is:

property_value = get(env_object)

Get an individual environment object with the
xpctarget.targets.Item (env collection object) method. For
example:

tgs=xpctarget.targets;
env_object=tgs.Item('TargetPC1');
property_value=env_object.HostTargetComm

1-95

xpctarget.env.get (env object)

The environment properties for a target environment object are listed
in the following tables.

Tip To access a subset of these properties in Simulink Real-Time
Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 1-96

• “Target Settings” on page 1-102

• “Boot Configuration” on page 1-106

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in
the Target Properties pane of
Simulink Real-Time Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

1-96

xpctarget.env.get (env object)

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of
Simulink Real-Time Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of Simulink
Real-Time Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

1-97

xpctarget.env.get (env object)

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane of
Simulink Real-Time Explorer.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box
in the Target Properties pane
of Simulink Real-Time Explorer.
Ask your system administrator
for this value.

For example, your subnet mask
could be 255.255.255.0.

1-98

xpctarget.env.get (env object)

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of Simulink
Real-Time Explorer. Ask your
system administrator for this
value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and 'USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of Simulink
Real-Time Explorer. This
property is set by default to PCI,
and determines the bus type of
your target computer. You do not
need to define a bus type for your
host computer, which can be the
same or different from the bus
type in your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values

1-99

xpctarget.env.get (env object)

Environment Property Description

for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver Property values are '3C90x',
'I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
Simulink Real-Time Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of Simulink Real-Time
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

1-100

xpctarget.env.get (env object)

Environment Property Description

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of Simulink
Real-Time Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the

1-101

xpctarget.env.get (env object)

Environment Property Description

corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater
than 20000 in the Port box in
the Target Properties pane of
Simulink Real-Time Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

1-102

xpctarget.env.get (env object)

Environment Property Description

MaxModelSize Supported property values are ’1MB’ (the default) and
’4MB’. Value ’16MB’ is not supported.

Select 1 MB or 4 MB from the Model size list in the
Target Properties pane of Simulink Real-Time
Explorer.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. Memory not used by the target
application is used by the kernel and by the heap for
data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

1-103

xpctarget.env.get (env object)

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are 'on' and 'off' (the default).

If you create a target boot kernel when ShowHardware
is 'on' and boot the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel boots with ShowHardware set.

1-104

xpctarget.env.get (env object)

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'xxx',
where xxx is a positive value specifying the amount of
RAM, in megabytes, installed on the target computer.

Under RAM size, click the Auto orManual button in
the Target Properties pane of Simulink Real-Time
Explorer. If you click Manual, enter the amount of
RAM, in megabytes, installed on the target computer
in the Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is assigned 'Auto', the target
application reads the target computer BIOS and
determines the amount of memory up to a maximum of
2 GB. If the target application cannot read the BIOS,
you must select Manual mode and enter the amount of
memory, in megabytes, up to a maximum of 2 GB.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

1-105

xpctarget.env.get (env object)

Environment Property Description

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of
Simulink Real-Time Explorer.

If your license file does not
include the license for the
Simulink Real-Time standalone

1-106

xpctarget.env.get (env object)

Environment Property Description

mode product, your only options
are Removable Disk, CD, DOS
Loader, and Network. With the
Simulink Real-Time standalone
mode product licensed and
installed, you have the additional
choice of Stand Alone.

Tip In the Target Properties
pane of Simulink Real-Time
Explorer, click the Create boot
disk button to create a bootable
image in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot
requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address in
Simulink Real-Time Explorer,
first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the

1-107

xpctarget.env.get (env object)

Environment Property Description

MAC address automatically the
next time you restart the target
computer.

See Also xpctarget.env.set (env object)

1-108

xpctarget.env.set (env object)

Purpose Change target environment object property values (not recommended)

Syntax env_object.property_name = property_value
env_object.set('prop_name1,'prop_value1','prop_name2',. . .)
set(env_object,'prop_name1','prop_value1','prop_name2',. . .)

Arguments env_object Name of a target environment object.

property_name Name of a target environment object property.

property_value Value for a target environment object property.
Always use quotation marks for character
strings; quotation marks are optional for
numbers.

Description env_object.property_name = property_value sets property
property_name of target environment object env_object to
property_value.

Note Method xpctarget.env.set (env object) will be removed in a
future release. Use SimulinkRealTime.targetSettings.set instead.

Alternative syntaxes for one or more property-value pairs are:

env_object.set('prop_name1,'prop_value1','prop_name2',. .
.)

set(env_object,'prop_name1','prop_value1','prop_name2',. .
.)

Get an individual environment object with the
xpctarget.targets.Item (env collection object) method. For
example:

tgs=xpctarget.targets;
env_object=tgs.Item('TargetPC1');

1-109

xpctarget.env.set (env object)

env_object.HostTargetComm='RS232'

Not all properties are user writable. The writable properties for a target
environment object are listed in the following table.

Tip To access a subset of these properties in Simulink Real-Time
Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 1-110

• “Target Settings” on page 1-116

• “Boot Configuration” on page 1-120

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in
the Target Properties pane of
Simulink Real-Time Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

1-110

xpctarget.env.set (env object)

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of
Simulink Real-Time Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of Simulink
Real-Time Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

1-111

xpctarget.env.set (env object)

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane of
Simulink Real-Time Explorer.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box
in the Target Properties pane
of Simulink Real-Time Explorer.
Ask your system administrator
for this value.

For example, your subnet mask
could be 255.255.255.0.

1-112

xpctarget.env.set (env object)

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of Simulink
Real-Time Explorer. Ask your
system administrator for this
value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and 'USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of Simulink
Real-Time Explorer. This
property is set by default to PCI,
and determines the bus type of
your target computer. You do not
need to define a bus type for your
host computer, which can be the
same or different from the bus
type in your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values

1-113

xpctarget.env.set (env object)

Environment Property Description

for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver Property values are '3C90x',
'I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
Simulink Real-Time Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of Simulink Real-Time
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

1-114

xpctarget.env.set (env object)

Environment Property Description

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of Simulink
Real-Time Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the

1-115

xpctarget.env.set (env object)

Environment Property Description

corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater
than 20000 in the Port box in
the Target Properties pane of
Simulink Real-Time Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

1-116

xpctarget.env.set (env object)

Environment Property Description

MaxModelSize Supported property values are ’1MB’ (the default) and
’4MB’. Value ’16MB’ is not supported.

Select 1 MB or 4 MB from the Model size list in the
Target Properties pane of Simulink Real-Time
Explorer.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. Memory not used by the target
application is used by the kernel and by the heap for
data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

1-117

xpctarget.env.set (env object)

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in
the Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are 'on' and 'off' (the default).

If you create a target boot kernel when ShowHardware
is 'on' and boot the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel boots with ShowHardware set.

1-118

xpctarget.env.set (env object)

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'xxx',
where xxx is a positive value specifying the amount of
RAM, in megabytes, installed on the target computer.

Under RAM size, click the Auto orManual button in
the Target Properties pane of Simulink Real-Time
Explorer. If you click Manual, enter the amount of
RAM, in megabytes, installed on the target computer
in the Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is assigned 'Auto', the target
application reads the target computer BIOS and
determines the amount of memory up to a maximum of
2 GB. If the target application cannot read the BIOS,
you must select Manual mode and enter the amount of
memory, in megabytes, up to a maximum of 2 GB.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in
the Target Properties pane of Simulink Real-Time
Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

1-119

xpctarget.env.set (env object)

Environment Property Description

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of Simulink Real-Time
Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of
Simulink Real-Time Explorer.

If your license file does not
include the license for the
Simulink Real-Time standalone

1-120

xpctarget.env.set (env object)

Environment Property Description

mode product, your only options
are Removable Disk, CD, DOS
Loader, and Network. With the
Simulink Real-Time standalone
mode product licensed and
installed, you have the additional
choice of Stand Alone.

Tip In the Target Properties
pane of Simulink Real-Time
Explorer, click the Create boot
disk button to create a bootable
image in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot
requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address in
Simulink Real-Time Explorer,
first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the

1-121

xpctarget.env.set (env object)

Environment Property Description

MAC address automatically the
next time you restart the target
computer.

See Also xpctarget.env.get (env object)

1-122

xpctarget.fs Class

Purpose Manage the folders and files on the target computer (not recommended)

Description This class includes the folder methods from xpctarget.fsbase Class
and implements file access methods used on the target computer.

Note Class xpctarget.fs will be removed in a future release. Use
class SimulinkRealTime.fileSystem instead.

Constructor

Constructor Description

xpctarget.fs Create file system object

Methods

These methods are inherited from xpctarget.fsbase Class.

Method Description

xpctarget.fsbase.cd Change folder on target computer

xpctarget.fsbase.dir List contents of current folder on target computer

xpctarget.fsbase.mkdir Make folder on target computer

xpctarget.fsbase.pwd Current folder path of target computer

xpctarget.fsbase.rmdir Remove folder from target computer

These methods are specific to class fs.

Method Description

xpctarget.fs.diskinfo Information about target computer drive

xpctarget.fs.fclose Close open target computer file(s)

xpctarget.fs.fileinfo Target computer file information

xpctarget.fs.filetable Information about open files in target computer file system

1-123

xpctarget.fs Class

Method Description

xpctarget.fs.fopen Open target computer file for reading

xpctarget.fs.fread Read open target computer file

xpctarget.fs.fwrite Write binary data to open target computer file

xpctarget.fs.getfilesizeSize of file on target computer

xpctarget.fs.removefileRemove file from target computer

1-124

xpctarget.fs

Purpose Create Simulink Real-Time file system object (not recommended)

Syntax filesys_object = xpctarget.fs
filesys_object = xpctarget.fs(target_object)
filesys_object = xpctarget.fs
filesys_object = xpctarget.fs()

Arguments filesys_object Variable name to reference
the file system object.

target_object Variable name to reference
the target object.

Description Constructor of a file system object (xpctarget.fs Class). The file
system object represents the file system on the target computer. You
work with the file system by changing the file system object using
methods.

Note Constructor xpctarget.fs will be removed in a future release.
Use constructor SimulinkRealTime.fileSystem instead.

If you have one target computer, or if you designate a target computer as
the default one in your system, use filesys_object = xpctarget.fs
to create a file system object.

If you have a target computer object in the Simulink Real-Time
Explorer, use filesys_object = xpctarget.fs(target_object)
to construct a corresponding file system object from the MATLAB
Command Window.

Examples In the following example, a file system object for the default target
computer is created.

fs1 = xpctarget.fs

1-125

xpctarget.fs

If you have an xpctarget.xpc object, you can construct an
xpctarget.fs object by passing the xpctarget.xpc object variable to
the xpctarget.fs constructor as an argument.

tg1 = xpctarget.xpc('TargetPC1');
fs2 = xpctarget.fs(tg1)

1-126

xpctarget.fs.diskinfo

Purpose Information about target computer drive (not recommended)

Syntax filesys_obj.diskinfo(target_PC_drive)
diskinfo(filesys_obj,target_PC_drive)

Arguments filesys_obj Name of the xpctarget.fs file system object.

target_PC_drive Name of the target computer drive for which
to return information.

Description filesys_obj.diskinfo(target_PC_drive) returns disk information
for the specified target computer drive. An alternative syntax is:

diskinfo(filesys_obj,target_PC_drive)

This is a method of xpctarget.fs objects called from the host computer.

1-127

xpctarget.fs.diskinfo

Examples Return disk information for the target computer C:\ drive for the file
system object fsys.

diskinfo(fsys,'C:\') or fsys.diskinfo('C:\')
ans =

Label: 'SYSTEM '
DriveLetter: 'C'

Reserved: ''
SerialNumber: 1.0294e+009

FirstPhysicalSector: 63
FATType: 32

FATCount: 2
MaxDirEntries: 0

BytesPerSector: 512
SectorsPerCluster: 4

TotalClusters: 2040293
BadClusters: 0

FreeClusters: 1007937
Files: 19968

FileChains: 22480
FreeChains: 1300

LargestFreeChain: 64349

1-128

xpctarget.fs.fclose

Purpose Close open target computer files (not recommended)

Syntax fclose(filesys_obj,file_ID)
filesys_obj.fclose(file_ID)

Arguments filesys_obj Name of the xpctarget.fs file system object.

file_ID File identifier of the file to close.

Description Method of xpctarget.fs objects. From the host computer, closes
one or more open files in the target computer file system (except
standard input, output, and error). The file_ID argument is the file
identifier associated with an open file (see xpctarget.fs.fopen and
xpctarget.fs.filetable). You cannot have more than eight files open
in the file system.

Examples Close the open file identified by the file identifier h in the file system
object fsys.

fclose(fsys,h) or fsys.fclose(h)

See Also fclose | xpctarget.fs.fopen | xpctarget.fs.fread |
xpctarget.fs.filetable | xpctarget.fs.fwrite

1-129

xpctarget.fs.fileinfo

Purpose Target computer file information (not recommended)

Syntax fileinfo(filesys_obj,file_ID)
filesys_obj.fileinfo(file_ID)

Arguments filesys_obj Name of the xpctarget.fs file system object.

file_ID File identifier of the file for which to get file
information.

Description Method of xpctarget.fs objects. From the host computer, gets the
information for the file associated with file_ID.

Examples Return file information for the file associated with the file identifier
h in the file system object fsys.

fileinfo(fsys,h) or fsys.fileinfo(h)
ans =

FilePos: 0
AllocatedSize: 12288
ClusterChains: 1

VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

1-130

xpctarget.fs.filetable

Purpose Information about open files in target computer file system (not
recommended)

Syntax filetable(filesys_obj)
filesys_obj.filetable

Arguments filesys_obj Name of the xpctarget.fs file system object.

Description Method of xpctarget.fs objects. From the host computer, displays a
table of the open files in the target computer file system. You cannot
have more than eight files open in the file system.

Examples Return a table of the open files in the target computer file system for
the file system object fsys.

filetable(fsys) or fsys.filetable
ans =
Index Handle Flags FilePos Name
--

0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 000C0003 R__ 8512 C:\DATA3.DAT
4 001E000S R__ 0 C:\DATA4.DAT

The table returns the open file handles in hexadecimal. To convert a
handle to one that other xpctarget.fs methods, such as fclose, can
use, use the hex2dec function.

h1 = hex2dec('001E0001'))
h1 =
1966081

To close that file, use the xpctarget.fs fclose method.

fsys.fclose(h1);

1-131

xpctarget.fs.filetable

See Also xpctarget.fs.fopen | xpctarget.fs.fclose

1-132

xpctarget.fs.fopen

Purpose Open target computer file for reading (not recommended)

Syntax file_ID = fopen(file_obj,'file_name')
file_ID = file_obj.fopen('file_name')
file_ID = fopen(file_obj,'file_name',permission)
file_ID = file_obj.fopen('file_name',permission)

Arguments file_obj Name of the xpctarget.fs object.

'file_name' Name of the target computer to open.

permission Values are 'r', 'w', 'a', 'r+', 'w+', or 'a+'.
This argument is optional with 'r' as the
default value.

Description Method of xpctarget.fs objects. From the host computer, opens the
specified filename on the target computer for binary access.

The permission argument values are

• 'r'

Open the file for reading (default). The method does nothing if the
file does not already exist.

• 'w'

Open the file for writing. The method creates the file if it does not
already exist.

• 'a'

Open the file for appending to the file. Initially, the file pointer is at
the end of the file. The method creates the file if it does not already
exist.

• 'r+'

Open the file for reading and writing. Initially, the file pointer is at
the beginning of the file. The method does nothing if the file does
not already exist.

1-133

xpctarget.fs.fopen

• 'w+'

Open the file for reading and writing. The method empties the file
first, if the file already exists and has content, and places the file
pointer at the beginning of the file. The method creates the file if
it does not already exist.

• 'a+'

Open the file for reading and appending to the file. Initially, the file
pointer is at the beginning of the file. The method creates the file if
it does not already exist.

You cannot have more than eight files open in the file system.
This method returns the file identifier for the open file in file_ID.
You use file_ID as the first argument to the other file I/O
methods (such as xpctarget.fs.fclose, xpctarget.fs.fread, and
xpctarget.fs.fwrite).

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')
ans =

2883584
d = fread(fsys,h);

See Also fopen | xpctarget.fs.fclose | xpctarget.fs.fread |
xpctarget.fs.fwrite

1-134

xpctarget.fs.fread

Purpose Read open target computer file (not recommended)

Syntax A = file_obj.fread(file_ID)
A = fread(file_obj,file_ID)
A = file_obj.fread(file_ID,offset,numbytes)
A = fread(file_obj,file_ID,offset,numbytes)

Arguments file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to read.

offset Position from the beginning of the file from which
fread can start to read.

numbytes Maximum number of bytes fread can read.

Description A = file_obj.fread(file_ID) reads binary data from the file
on the target computer and writes it into matrix A. The file_ID
argument is the file identifier associated with an open file (see
xpctarget.fs.fopen). An alternative syntax is:

A = fread(file_obj,file_ID)

A = file_obj.fread(file_ID,offset,numbytes) reads a block of
bytes from file_ID and writes the block into matrix A. An alternative
syntax is:

A = fread(file_obj,file_ID,offset,numbytes)

The offset argument specifies the position from the beginning of the
file from which this function can start to read. numbytes specifies the
maximum number of bytes to read.

To get a count of the total number of bytes read into A, use the following:

count = length(A);

1-135

xpctarget.fs.fread

length(A) might be less than the number of bytes requested if that
number of bytes are not currently available. It is zero if the operation
reaches the end of the file.

This is a method of xpctarget.fs objects called from the host computer.

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for reading.

h=fsys.fopen('data.dat')
d=fread(fsys,h);

This reads the file data.dat and stores the contents of the file to d. This
content is in the Simulink Real-Time file format.

See Also fread | xpctarget.fs.fclose | xpctarget.fs.fopen |
xpctarget.fs.fwrite

1-136

xpctarget.fs.fwrite

Purpose Write binary data to open target computer file (not recommended)

Syntax fwrite(file_obj,file_ID,A)
file_obj.fwrite(file_ID,A)

Arguments file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to write.

A Elements of matrix A to be written to the specified file.

Description Method of xpctarget.fs objects. From the host computer, writes
the elements of matrix A to the file identified by file_ID. The data
is written to the file in column order. The file_ID argument is the
file identifier associated with an open file (see xpctarget.fs.fopen).
fwrite requires that the file be open with write permission.

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for writing.

h = fopen(fsys,'data.dat','w')

or

fsys.fopen('data.dat','w')

ans =
2883584

d = fwrite(fsys,h,magic(5));

This writes the elements of matrix A to the file handle h. This content is
written in column order.

See Also fwrite | xpctarget.fs.fclose | xpctarget.fs.fopen |
xpctarget.fs.fread

1-137

xpctarget.fs.getfilesize

Purpose Size of file on target computer (not recommended)

Syntax getfilesize(file_obj,file_ID)
file_obj.getfilesize(file_ID)

Arguments file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to get the size of.

Description Method of xpctarget.fs objects. From the host computer, gets the
size (in bytes) of the file identified by the file_ID file identifier on the
target computer file system. Use the Simulink Real-Time file object
method xpctarget.fs.fopen to open the file system object.

Examples Get the size of the file identifier h for the file system object fsys.

getfilesize(fsys,h) or fsys.getfilesize(h)

See Also xpctarget.fs.fopen

1-138

xpctarget.fs.removefile

Purpose Remove file from target computer (not recommended)

Syntax removefile(file_obj,file_name)
file_obj.removefile(file_name)

Arguments file_name Name of the file to remove from the target
computer file system.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fs objects. Removes a file from the target
computer file system.

You cannot recover this file once it is removed.

Note Method xpctarget.fs.removefile will be removed in a future
release. Use method SimulinkRealTime.fileSystem.removefile
instead.

Examples Remove the file data2.dat from the target computer file system fsys.

removefile(fsys,'data2.dat')

or

fsys.removefile('data2.dat')

1-139

xpctarget.fs.selectdrive

Purpose Select target computer drive (not recommended)

Syntax selectdrive(file_obj,'drive')
file_obj.selectdrive('drive')

Arguments drive Name of the drive to set.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fs objects. selectdrive sets the current drive of
the target computer to the specified string. Enter the drive string with
an extra backslash (\). For example, D:\\ for the D:\ drive.

Note Method xpctarget.fs.selectdrive will be removed in a future
release. Use method SimulinkRealTime.fileSystem.selectdrive or
SimulinkRealTime.fileSystem.cd instead.

Examples Set the current target computer drive to D:\.

selectdrive(fsys,'D:\\')

or

fsys.selectdrive('D:\\')

1-140

xpctarget.fsbase Class

Purpose Base class of file system and file transfer protocol (FTP) classes (not
recommended)

Description This class is the base class for xpctarget.fs Class and xpctarget.ftp
Class. All methods are inherited by the derived classes. The constructor
for this class is called implicitly when the constructors for the derived
classes are called:

Note Class xpctarget.fsbase will be removed in a future release.
Use class SimulinkRealTime.fileSystem instead.

Methods

These methods are inherited by the derived classes.

Method Description

xpctarget.fsbase.cd Change folder on target computer

xpctarget.fsbase.dir List contents of current folder on target computer

xpctarget.fsbase.mkdir Make folder on target computer

xpctarget.fsbase.pwd Current folder path of target computer

xpctarget.fsbase.rmdir Remove folder from target computer

1-141

xpctarget.fsbase.cd

Purpose Change folder on target computer (not recommended)

Syntax cd(file_obj,target_PC_dir)
file_obj.cd(target_PC_dir)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

target_PC_dir Name of the target computer folder to change to.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host computer, changes folder on the target computer.

Note Method xpctarget.fsbase.cd will be removed in a future
release. Use method SimulinkRealTime.fileSystem.cd or
SimulinkRealTime.fileSystem.selectdrive instead.

Examples Change folder from the current to one named logs for the file system
object fsys.

cd(fsys,logs) or fsys.cd(logs)

Change folder from the current to one named logs for the FTP object f.

cd(f,logs) or f.cd(logs)

See Also cd | xpctarget.fsbase.mkdir | xpctarget.fsbase.pwd

1-142

xpctarget.fsbase.dir

Purpose List contents of current folder on target computer (not recommended)

Syntax dir(file_obj)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host computer, lists the contents of the current folder
on the target computer.

Note Method xpctarget.fsbase.dir will be removed in a future
release. Use method SimulinkRealTime.fileSystem.dir instead.

To get the results in an M-by-1 structure, use a syntax like
ans=dir(file_obj). This syntax returns a structure like the following:

ans =
1x5 struct array with fields:
name
date
time
bytes
isdir

where

• name — Name of an object in the folder, shown as a cell array. The
name, stored in the first element of the cell array, can have up to
eight characters. The three-character file extension is stored in the
second element of the cell array.

• date — Date of the last save of that object

• time — Time of the last save of that object

1-143

xpctarget.fsbase.dir

• bytes — Size in bytes of that object

• isdir — Logical value indicating that the object is (1) or is not (0)
a folder

Examples List the contents of the current folder for the file system object fsys.
You can also list the contents of the current folder for the FTP object f.

dir(fsys) or dir(f)
4/12/1998 20:00 222390 IO SYS
11/2/2003 13:54 6 MSDOS SYS
11/5/1998 20:01 93880 COMMAND COM
11/2/2003 13:54 <DIR> 0 TEMP
11/2/2003 14:00 33 AUTOEXEC BAT
11/2/2003 14:00 512 BOOTSECT DOS
18/2/2003 16:33 4512 SC1SIGNA DAT

18/2/2003 16:17 <DIR> 0 FOUND 000
29/3/2003 19:19 8512 DATA DAT
28/3/2003 16:41 8512 DATADATA DAT
28/3/2003 16:29 4512 SC4INTEG DAT
1/4/2003 9:28 201326592 PAGEFILE SYS

11/2/2003 14:13 <DIR> 0 WINNT
4/5/2001 13:05 214432 NTLDR '

4/5/2001 13:05 34468 NTDETECT COM
11/2/2003 14:15 <DIR> 0 DRIVERS
22/1/2001 11:42 217 BOOT INI'

28/3/2003 16:41 8512 A DAT
29/3/2003 19:19 2512 SC3SIGNA DAT
11/2/2003 14:25 <DIR> 0 INETPUB
11/2/2003 14:28 0 CONFIG SYS
29/3/2003 19:10 2512 SC3INTEG DAT
1/4/2003 18:05 2512 SC1GAIN DAT
11/2/2003 17:26 <DIR> 0 UTILIT~1

You must use the dir(f) syntax to list the contents of the folder.

1-144

xpctarget.fsbase.dir

See Also dir | xpctarget.fsbase.mkdir | xpctarget.fsbase.cd |
xpctarget.fsbase.pwd

1-145

xpctarget.fsbase.mkdir

Purpose Make folder on target computer (not recommended)

Syntax mkdir(file_obj,dir_name)
file_obj.mkdir(dir_name)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs object.

dir_name Name of the folder to be created.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host computer, makes a new folder in the current
folder on the target computer file system.

Note Method xpctarget.fsbase.mkdir will be removed in a future
release. Use method SimulinkRealTime.fileSystem.mkdir instead.

Note that to delete a folder from the target computer, you need to reboot
the computer into DOS or some other operating system and use a utility
in that system to delete the folder.

Examples Create a new folder, logs, in the target computer file system object
fsys.

mkdir(fsys,logs)

or

fsys.mkdir(logs)

Create a new folder, logs, in the target computer FTP object f.

mkdir(f,logs) or f.mkdir(logs)

See Also mkdir | xpctarget.fsbase.dir | xpctarget.fsbase.pwd

1-146

xpctarget.fsbase.pwd

Purpose Current folder path of target computer (not recommended)

Syntax pwd(file_obj)
file_obj.pwd

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. Returns the pathname of the current target computer folder.

Note Method xpctarget.fsbase.cd will be removed in a future
release. Use method SimulinkRealTime.fileSystem.pwd instead.

Examples Return the target computer current folder for the file system object
fsys.

pwd(fsys) or fsys.pwd

Return the target computer current folder for the FTP object f.

pwd(f) or f.pwd

See Also pwd | xpctarget.fsbase.dir | xpctarget.fsbase.mkdir

1-147

xpctarget.fsbase.rmdir

Purpose Remove folder from target computer (not recommended)

Syntax rmdir(file_obj,dir_name)
file_obj.rmdir(dir_name)

Arguments dir_name Name of the folder to remove from the target
computer file system.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. Removes a folder from the target computer file system.

You cannot recover this folder once it is removed.

Note Method xpctarget.fsbase.rmdir will be removed in a future
release. Use method SimulinkRealTime.fileSystem.rmdir instead.

Examples Remove the folder data2dir.dat from the target computer file system
fsys.

rmdir(f,'data2dir.dat')

or

fsys.rmdir('data2dir.dat')

1-148

xpctarget.ftp Class

Purpose Manage the folders and files on the target computer via file transfer
protocol (FTP) (not recommended)

Description The FTP object represents the file on the target computer. You work
with the file folders using the inherited methods, and transport the
file between the host and target computers using the xpctarget.ftp
methods.

Note Class xpctarget.ftp will be removed in a future release. Use
class SimulinkRealTime.fileSystem instead.

Constructor

Constructor Description

xpctarget.ftp Create file transfer protocol (FTP) object

Methods

These methods are inherited from xpctarget.fsbase Class.

Method Description

xpctarget.fsbase.cd Change folder on target computer

xpctarget.fsbase.dir List contents of current folder on target computer

xpctarget.fsbase.mkdir Make folder on target computer

xpctarget.fsbase.pwd Current folder path of target computer

xpctarget.fsbase.rmdir Remove folder from target computer

These methods are specific to class ftp.

1-149

xpctarget.ftp Class

Method Description

xpctarget.ftp.get
(ftp)

Retrieve copy of requested file from target computer

xpctarget.ftp.put Copy file from host computer to target computer

1-150

xpctarget.ftp

Purpose Create file object (not recommended)

Syntax file_object = xpctarget.ftp
file_object = xpctarget.ftp(target_object)

Arguments file_object Variable name to reference the file
object.

target_object Variable name to reference the target
object.

Description Constructor of a file object (xpctarget.ftp Class). The file object
represents the file on the target computer. You work with the file by
changing the file object using methods.

Note Constructor xpctarget.ftp will be removed in a future release.
Use constructor SimulinkRealTime.fileSystem instead.

If you have one target computer, or if you designate a target computer
as the default one in your system, use file_object = xpctarget.ftp
to create a file object.

If you have a target computer object in the Simulink Real-Time
Explorer, use file_object = xpctarget.ftp(target_object)to
construct a corresponding file object from the MATLAB Command
Window.

Examples In the following example, a file object for the default target computer
is created.

ftp1=xpctarget.ftp

1-151

xpctarget.ftp

If you have an xpctarget.xpc object, you can construct a file object
by passing the xpctarget.xpc object variable to the xpctarget.ftp
constructor as an argument.

tg1=xpctarget.xpc('TargetPC1');
ftp2=xpctarget.ftp(tg1)

1-152

xpctarget.ftp.get (ftp)

Purpose Retrieve copy of requested file from target computer (not recommended)

Syntax get(file_obj,file_name)
file_obj.get(file_name)

Arguments file_obj Name of the xpctarget.ftp object.

file_name Name of a file on the target computer.

Description Method of xpctarget.ftp objects. Copies the specified filename
from the target computer to the current folder of the host computer.
file_name must be either a fully qualified filename on the target
computer, or located in the current folder of the target computer.

Note Method xpctarget.ftp.get (ftp) will be removed in a future
release. Use method SimulinkRealTime.copyFileToHost instead.

Examples Retrieve a copy of the file named data.dat from the current folder of
the target computer file object f.

get(f,'data.dat') or f.get('data.dat')
ans = data.dat

See Also xpctarget.ftp.put

1-153

xpctarget.ftp.put

Purpose Copy file from host computer to target computer (not recommended)

Syntax put(file_obj,file_name)
file_obj.put(file_name)

Arguments file_obj Name of the xpctarget.ftp object.

file_name Name of the file to copy to the target computer.

Description Method of xpctarget.ftp objects. Copies a file from the host computer
to the target computer. file_name must be a file in the current folder
of the host computer. The method writes file_name to the target
computer disk.

Note Method xpctarget.ftp.put will be removed in a future release.
Use method SimulinkRealTime.copyFileToTarget instead.

put might be slower than the get operation for the same file. This is
expected behavior.

Examples Copy the file data2.dat from the current folder of the host computer to
the current folder of the target computer FTP object f.

put(f,'data2.dat')

or

fsys.put('data2.dat')

See Also xpctarget.fsbase.dir | xpctarget.ftp.get (ftp)

1-154

xpctarget.targets Class

Purpose Container object to manage target computer environment collection
objects (not recommended)

Description The targets class contains a collection of environment settings, stored
in xpctarget.env Class objects.

Note Class xpctarget.targets will be removed in a future release.
Use package SimulinkRealTime methods instead.

Constructor

Constructor Description

xpctarget.targets Create container object to manage target computer
environment collection objects

Methods

Method Description

xpctarget.targets.Add (env
collection object)

Add a new Simulink Real-Time
environment collection object.

xpctarget.targets.getTargetNames
(env collection object)

Retrieve the Simulink Real-Time
environment collection object
names.

xpctarget.targets.Item
(env collection object)

Retrieve Simulink Real-Time
environment collection object.

xpctarget.targets.makeDefault
(env collection object)

Set target computer environment
collection object as default.

xpctarget.targets.Remove
(env collection object)

Remove an Simulink Real-Time
environment collection object.

1-155

xpctarget.targets Class

Properties

Property Description Writable

DefaultTarget Returns an xpctarget.env object
that references the default target
computer object environment.

No

NumTargets Returns the number of target
computer environment objects in the
container.

No

1-156

xpctarget.targets

Purpose Create container object to manage target computer environment
collection objects (not recommended)

Syntax env_collection_object = xpctarget.targets

Description Constructor for target environment object collection
(xpctarget.targets Class). The collection manages the
environment object (xpctarget.env Class) for a multitarget Simulink
Real-Time system.

Note Constructor xpctarget.targets will be removed in a future
release.

This is in contrast to the setxpcenv and getxpcenv functions, which
manage the environment properties for the default target computer.
You work with the environment objects by changing the environment
properties using methods.

Use the syntax

env_object = xpctarget.targets

Access properties of an env_collection_object
object with env_collection_object.propertyname,
env_collection_object.propertyname.propertyname, or with
the xpctarget.targets.get (env collection object) and
xpctarget.targets.set (env collection object) commands.

Access an individual environment object via xpctarget.targets.Item
(env collection object),

Examples Create an environment container object. With this object, you can
manage the environment collection objects for the targets in your
system.

tgs=xpctarget.targets

1-157

xpctarget.targets

See Also xpctarget.targets.get (env collection object) |
xpctarget.targets.set (env collection object)

1-158

xpctarget.targets.Add (env collection object)

Purpose Add new Simulink Real-Time environment collection object (not
recommended)

Syntax env_collection_object.Add

Description Method of xpctarget.targets objects. Add creates an Simulink
Real-Time environment collection object on the host computer.

Note Method xpctarget.targets.Add (env collection
object) will be removed in a future release. Use method
SimulinkRealTime.addTarget instead.

Examples Add a new Simulink Real-Time environment collection object to the
system. Assume that tgs represents the environment collection object.
The first get(tgs) function returns the current number of target
computers. The second function returns the number of target computers
after you add one.

tgs=xpctarget.targets;

get(tgs);

tgs.Add;

get(tgs);

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

1-159

xpctarget.targets.get (env collection object)

Purpose Return target object collection environment property values (not
recommended)

Syntax get(env_collection_object, 'env_collection_object_property')

Arguments env_collection_object Name of a collection of target
objects.

'env_collection_object_
property'

Name of a target object
environment property.

Description get gets the values of environment properties for a collection of target
objects.

Note Method xpctarget.targets.get (env collection
object) will be removed in a future release. Use method
SimulinkRealTime.getTargetSettings instead.

The environment properties for a target environment object collection
are listed in the following table. This table includes a description of the
properties and which properties you can change directly by assigning
a value.

Property Description Writable

DefaultTarget Contains an instance of the
default target environment object
(xpctarget.env).

No

NumTargets Contains the number of target
objects in the Simulink Real-Time
system. The actual number of target
computers in the system can differ
from this value.

No

1-160

xpctarget.targets.get (env collection object)

Examples List the values of the target object collection environment property
values. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

List the value for the target object environment collection property
NumTargets. Note that the property name is a string, in quotation
marks, and not case sensitive.

get(tgs,'NumTargets') or tgs.get('NumTargets'))

See Also get | xpctarget.targets.set (env collection object) | set

1-161

xpctarget.targets.getTargetNames (env collection object)

Purpose Retrieve Simulink Real-Time environment object names (not
recommended)

Syntax env_collection_object.getTargetNames

Description Method of xpctarget.targets objects. getTargetNames retrieves
the names of the existing Simulink Real-Time environment collection
objects from the xpctarget.targets class.

Note Method xpctarget.targets.getTargetNames (env
collection object) will be removed in a future release. Use package
SimulinkRealTime methods instead.

Examples Retrieve the names of the Simulink Real-Time environment collection
objects in the system. Assume that tgs represents the target object
collection environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

1-162

xpctarget.targets.Item (env collection object)

Purpose Retrieve specific Simulink Real-Time environment (env) object (not
recommended)

Syntax env_collection_object.Item('env_object_name')

Description Method of xpctarget.targets objects. Item retrieves a
specific environment object (xpctarget.env Class) from the
xpctarget.targets class. Use this method to work with a particular
target computer environment object.

Note xpctarget.targets.Item (env collection
object) will be removed in a future release. Use
SimulinkRealTime.getTargetSettings instead.

Examples Retrieve a new Simulink Real-Time environment collection object from
the system. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

tgs.Item('TargetPC1')

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

1-163

xpctarget.targets.makeDefault (env collection object)

Purpose Set specific target computer environment object as default (not
recommended)

Syntax env_collection_object.makeDefault(`env_object_name')

Description Method of xpctarget.targets objects. makeDefault sets the specified
target computer environment object as the default target computer
from the xpctarget.targets class.

Note xpctarget.targets.makeDefault (env collection
object) will be removed in a future release. Use
SimulinkRealTime.targetSettings.setAsDefaultTarget
instead.

Examples Set the specified target collection object as the default target computer
collection. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

tgs.makeDefault('TargetPC2')

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

1-164

xpctarget.targets.Remove (env collection object)

Purpose Remove specific Simulink Real-Time environment object (not
recommended)

Syntax env_collection_object.Remove('env_collection_object_name')

Description Method of xpctarget.targets objects. Remove removes an existing
Simulink Real-Time environment object from the environment
collection. If you remove the target environment object of the default
target computer, the next target environment object becomes the default
target computer. You can remove all but the last target computer,
which becomes the default target computer.

Note xpctarget.targets.Remove (env collection object) will be
removed in a future release. Use SimulinkRealTime.removeTarget
instead.

Examples Remove an Simulink Real-Time environment collection object from
the system. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

tgs.Remove('TargetPC2')

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

1-165

xpctarget.targets.set (env collection object)

Purpose Change target object environment collection object property values (not
recommended)

Syntax set(env_collection_object)

set(env_collection_object, 'property_name1',

'property_value1','property_name2', 'property_value2', . . .)

env_collection_object.set('property_name1',

'property_value1')

set(env_collection_object, property_name_vector,

property_value_vector)

env_collection_object.property_name = property_value

Arguments env_collection_object Name of a target environment collection
object.

'property_name' Name of a target object environment
collection property. Always use quotation
marks for character strings.

property_value Value for a target object environment
collection property. Always use quotation
marks for character strings; quotation
marks are optional for numbers.

Description set sets the values of environment properties for a collection of target
object environments. Not all properties are user writable. Properties
are entered as property-value pairs.

Note xpctarget.targets.set (env collection
object) will be removed in a future release. Use
SimulinkRealTime.targetSettings.set instead.

1-166

xpctarget.targets.set (env collection object)

The environment properties for a target object collection are listed in
the following table. This table includes a description of the properties
and which properties you can change directly by assigning a value.

Property Description Writable

DefaultTarget Contains an instance of the
default target environment object
(xpctarget.env).

No

NumTargets Contains the number of target
objects in the Simulink Real-Time
system. The actual number of target
computers in the system can differ
from this value.

No

See Also get | set | xpctarget.targets.get (env collection object)

1-167

xpctarget.xpc Class

Purpose Target object representing target application (not recommended)

Description Provides access to methods and properties used to start and stop the
target application, read and set parameters, monitor signals, and
retrieve status information about the target computer.

Note Class xpctarget.xpc will be removed in a future release. Use
class SimulinkRealTime.target instead.

Constructor

Constructor Description

xpctarget.xpc Create target object representing target application

Methods

Method Description

xpctarget.xpc.addscope Create scopes

xpctarget.xpc.close Close serial port connecting host computer with target
computer

xpctarget.xpc.get
(target application
object)

Return target application object property values

xpctarget.xpc.getlog All or part of output logs from target object

xpctarget.xpc.getparam Value of target object parameter index

xpctarget.xpc.getparamidParameter index from parameter list

xpctarget.xpc.getparamnameBlock path and parameter name from index list

xpctarget.xpc.getscope Scope object pointing to scope defined in kernel

xpctarget.xpc.getsignalValue of target object signal index

xpctarget.xpc.getsignalidSignal index or signal property from signal list

1-168

xpctarget.xpc Class

Method Description

xpctarget.xpc.getsignalidsfromlabelReturn vector of signal indices

xpctarget.xpc.getsignallabelReturn signal label

xpctarget.xpc.getsignalnameSignal name from index list

xpctarget.xpc.load Download target application to target computer

xpctarget.xpc.loadparamsetRestore parameter values saved in specified file

xpctarget.xpc.reboot Reboot target computer

xpctarget.xpc.remscope Remove scope from target computer

xpctarget.xpc.saveparamsetSave current target application parameter values

xpctarget.xpc.set
(target application
object)

Change target application object property values

xpctarget.xpc.setparam Change writable target object parameters

xpctarget.xpc.start
(target application
object)

Start execution of target application on target computer

xpctarget.xpc.stop
(target application
object)

Stop execution of target application on target computer

xpctarget.xpc.targetpingTest communication between host and target computers

xpctarget.xpc.unload Remove current target application from target computer

Properties

Properties are read using xpctarget.xpc.get (target application
object). Writable properties are written using xpctarget.xpc.set
(target application object).

1-169

xpctarget.xpc Class

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

• Parameter updating latency (if the
Double buffer parameter changes
parameter is set in the Simulink
Real-Time Options node of the model
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

No

1-170

xpctarget.xpc Class

Property Description Writable

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

1-171

xpctarget.xpc Class

Property Description Writable

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the
Simulink Real-Time Options pane of
the Configuration Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

Mode Type of Simulink Coder™ code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

1-172

xpctarget.xpc Class

Property Description Writable

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

1-173

xpctarget.xpc Class

Property Description Writable

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “Alternative Configuration and
Control Methods” for limitations on target
property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you booted the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

1-174

xpctarget.xpc Class

Property Description Writable

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you need
to select the Log Task Execution Time
check box in the Simulink Real-Time
Options pane of the Configuration
Parameters dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

1-175

xpctarget.xpc

Purpose Create target object representing target application (not recommended)

Syntax target_object=xpctarget.xpc
target_object=xpctarget.xpc
target_object=xpctarget.xpc('target_name')
target_object=xpctarget.xpc('target_name')

Arguments target_object Variable name to reference the target object

target_name Target name as specified in the Simulink
Real-Time Explorer

Description Constructor of a target object (xpctarget.xpc Class). The target
object represents the target application and target computer. You make
changes to the target application by changing the target object using
methods and properties.

Note Constructor xpctarget.xpc will be removed in a future release.
Use constructor SimulinkRealTime.target or function slrt instead.

If you have one target computer, or if you designate a target computer
as the default one in your system, use target_object=xpctarget.xpc.

If you have a target computer object in the Simulink Real-Time
Explorer, use target_object=xpctarget.xpc('target_name') to
construct a corresponding target object from the MATLAB Command
Window.

Examples Before you build a target application, you can check the connection
between your host and target computers by creating a target object, then
using the xpctarget.xpc.targetping method to check the connection.

tg = xpctarget.xpc
Simulink Real-Time Object

1-176

xpctarget.xpc

Connected = Yes
Application = loader

tg.targetping

ans =

success

If you have an Simulink Real-Time Explorer target object, and you want
to construct a corresponding target object in the MATLAB Command
Window, use a command like the following:

target_object=xpctarget.xpc('TargetPC1')

See Also xpctarget.xpc.get (target application object) |
xpctarget.xpc.set (target application object) |
xpctarget.xpc.targetping

1-177

xpctarget.xpc.addscope

Purpose Create scopes (not recommended)

Syntax Create a scope and scope object without assigning to a MATLAB
variable.

Note Method xpctarget.xpc.addscope will be removed in a future
release. Use method SimulinkRealTime.target.addscope instead.

addscope(target_object, scope_type, scope_number)
target_object.addscope(scope_type, scope_number)

Create a scope, scope object, and assign to a MATLAB variable

scope_object = addscope(target_object,

scope_type, scope_number)

scope_object = target_object.addscope(scope_type,

scope_number)

Target computer command line — When you are using this
command on the target computer, you can only add a target scope.

addscope
addscope scope_number

Arguments target_object Name of a target object. The default target name
is tg.

scope_type Values are 'host', 'target', or 'file'. This
argument is optional with host as the default value.

scope_number Vector of new scope indices. This argument is
optional. The next available integer in the target
object property Scopes as the default value.

If you enter a scope index for an existing scope object,
the result is an error.

1-178

xpctarget.xpc.addscope

Description addscope creates a scope of the specified type and updates the target
object property Scopes. This method returns a scope object vector. If
the result is not assigned to a variable, the scope object properties
are listed in the MATLAB window. The Simulink Real-Time product
supports 10 target scopes, 8 file scopes, and as many host scopes as the
target computer resources can support. If you try to add a scope with
the same index as an existing scope, the result is an error.

Examples Create a scope and scope object sc1 using the method addscope. A
target scope is created on the target computer with an index of 1, and a
scope object is created on the host computer, assigned to the variable
sc1. The target object property Scopes is changed from No scopes
defined to 1.

sc1 = addscope(tg,'target',1)

or

sc1 = tg.addscope('target',1)

Create a scope with the method addscope and then create a scope object,
corresponding to this scope, using the method getscope. A target scope
is created on the target computer with an index of 1, and a scope object
is created on the host computer, but it is not assigned to a variable. The
target object property Scopes is changed from No scopes defined to 1.

1-179

xpctarget.xpc.addscope

addscope(tg,'target',1) or tg.addscope('target',1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

Create two scopes using a vector of scope objects scvector. Two target
scopes are created on the target computer with scope indices of 1 and 2,
and two scope objects are created on the host computer that represent
the scopes on the target computer. The target object property Scopes
is changed from No scopes defined to 1,2.

scvector = addscope(tg, 'target', [1, 2])

Create a scope and scope object sc4 of type file using the method
addscope. A file scope is created on the target computer with an index
of 4. A scope object is created on the host computer and is assigned to
the variable sc4. The target object property Scopes is changed from
No scopes defined to 4.

sc4 = addscope(tg,'file',4) or sc4 = tg.addscope('file',4)

See Also xpctarget.xpc.remscope | xpctarget.xpc.getscope

How To • “Target Scope Usage”

• “Host Scope Usage”

• “File Scope Usage”

• “Application and Driver Scripts”

1-180

xpctarget.xpc.close

Purpose Close serial port connecting host computer with target computer (not
recommended)

Syntax close(target_object)
target_object.close

Arguments target_object Name of a target object.

Description close closes the serial connection between the host computer and a
target computer. If you want to use the serial port for another function
without quitting the MATLAB window – for example, a modem – use
this function to close the connection.

Note Method xpctarget.xpc.close will be removed in a future
release. Use method SimulinkRealTime.target.close instead.

1-181

xpctarget.xpc.get (target application object)

Purpose Return target application object property values (not recommended)

Syntax get(target_object, 'target_object_property')

Arguments target_object Name of a target object.

'target_object_property'Name of a target object property.

Description get gets the value of readable target object properties from a target
object.

Note Method xpctarget.xpc.get (target application
object) will be removed in a future release. Use method
SimulinkRealTime.target.get instead.

The properties for a target object are listed in the following table. This
table includes a description of the properties and which properties you
can change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

No

1-182

xpctarget.xpc.get (target application object)

Property Description Writable

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

• Parameter updating latency (if the
Double buffer parameter changes
parameter is set in the Simulink
Real-Time Options node of the model
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

1-183

xpctarget.xpc.get (target application object)

Property Description Writable

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the
Simulink Real-Time Options pane of
the Configuration Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

1-184

xpctarget.xpc.get (target application object)

Property Description Writable

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

Mode Type of Simulink Coder code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

1-185

xpctarget.xpc.get (target application object)

Property Description Writable

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “Alternative Configuration and
Control Methods” for limitations on target
property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you booted the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

1-186

xpctarget.xpc.get (target application object)

Property Description Writable

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

1-187

xpctarget.xpc.get (target application object)

Property Description Writable

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you need
to select the Log Task Execution Time
check box in the Simulink Real-Time
Options pane of the Configuration
Parameters dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

Examples List the value for the target object property StopTime. Notice that the
property name is a string, in quotation marks, and not case sensitive.

get(tg,'stoptime') or tg.get('stoptime')
ans = 0.2

See Also get | set | xpctarget.xpc.set (target application object)
| xpctarget.xpcsc.get (scope object) | xpctarget.xpc.set
(target application object)

1-188

xpctarget.xpc.getlog

Purpose All or part of output logs from target object (not recommended)

Syntax log = getlog(target_object, 'log_name', first_point,
number_samples, decimation)

Arguments log User-defined MATLAB variable.

'log_name' Values are TimeLog, StateLog, OutputLog, or
TETLog. This argument is required.

first_point First data point. The logs begin with 1. This
argument is optional. Default is 1.

number_samples Number of samples after the start time. This
argument is optional. Default is all points in log.

decimation 1 returns all sample points. n returns every nth
sample point. This argument is optional. Default
is 1.

Description Use this function instead of the function get when you want only part
of the data.

Note Method xpctarget.xpc.getlog will be removed in a future
release. Use method SimulinkRealTime.target.getlog instead.

Examples To get the first 1000 points in a log,

Out_log = getlog(tg, 'TETLog', 1, 1000)

To get every other point in the output log and plot values,

Output_log = getlog(tg, 'TETLog', 1, 10, 2)
Time_log = getlog(tg, 'TimeLog', 1, 10, 2)
plot(Time_log, Output_log)

1-189

xpctarget.xpc.getlog

How To • xpctarget.xpc.get (target application object)

• “Set Configuration Parameters”

1-190

xpctarget.xpc.getparam

Purpose Value of target object parameter index (not recommended)

Syntax getparam(target_object, parameter_index)

Arguments target_object Name of a target object. The default
name is tg.

parameter_index Index number of the parameter.

Description getparam returns the value of the parameter associated with
parameter_index.

Note Method xpctarget.xpc.getparam will be removed in a future
release. Use method SimulinkRealTime.target.getparam instead.

Examples Get the value of parameter index 5.

getparam(tg, 5)
ans = 400

1-191

xpctarget.xpc.getparamid

Purpose Parameter index from parameter list (not recommended)

Syntax getparamid(target_object, 'block_name', 'parameter_name')

Arguments target_object Name of a target object. The default name
is tg.

'block_name' Simulink block path without model name.

'parameter_name' Name of a parameter within a Simulink
block.

Description getparamid returns the index of a parameter in the parameter list
based on the path to the parameter name. The names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Simulink Coder uses for code generation.

Note Method xpctarget.xpc.getparamid will be removed in a future
release. Use method SimulinkRealTime.target.getparamid instead.

Examples Get the parameter property for the parameter Gain in the Simulink
block Gain1, incrementally increase the gain, and pause to observe
the signal trace.

id = getparamid(tg, 'Subsystem/Gain1', 'Gain')
for i = 1 : 3

set(tg, id, i*2000);
pause(1);

end

Get the property index of a single block.

getparamid(tg, 'Gain1', 'Gain') ans = 5

See Also xpctarget.xpc.getsignalid

1-192

xpctarget.xpc.getparamid

How To • “Application and Driver Scripts”

• “Why Does the getparamid Function Return Nothing?”

1-193

xpctarget.xpc.getparamname

Purpose Block path and parameter name from index list (not recommended)

Syntax getparamname(target_object, parameter_index)

Arguments target_object Name of a target object. The default name
is tg.

parameter_index Index number of the parameter.

Description getparamname returns two argument strings, block path and parameter
name, from the index list for the specified parameter index.

Note Method xpctarget.xpc.getparamid will be removed in a future
release. Use method SimulinkRealTime.target.getparamid instead.

Examples Get the block path and parameter name of parameter index 5.

[blockPath,parName]=getparamname(tg,5)
blockPath =
Signal Generator
parName =
Amplitude

1-194

xpctarget.xpc.getscope

Purpose Scope object pointing to scope defined in kernel (not recommended)

Syntax scope_object_vector = getscope(target_object, scope_number)
scope_object = target_object.getscope(scope_number)

Arguments target_object Name of a target object.

scope_number_vector Vector of existing scope indices listed in the
target object property Scopes. The vector can
have only one element.

scope_object MATLAB variable for a new scope object
vector. The vector can have only one scope
object.

Description getscope returns a scope object vector. If you try to get a nonexistent
scope, the result is an error. You can retrieve the list of existing
scopes using the method get(target_object, 'scopes') or
target_object.scopes.

Note Method xpctarget.xpc.getscope will be removed in a future
release. Use method SimulinkRealTime.target.getscope instead.

1-195

xpctarget.xpc.getscope

Examples If your Simulink model has an Simulink Real-Time scope block, a target
scope is created at the time the target application is downloaded to the
target computer. To change the number of samples, you need to create
a scope object and then change the scope object property NumSamples.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
sc1.NumSample = 500

The following example gets the properties of all scopes on the target
computer and creates a vector of scope objects on the host computer. If
the target object has more than one scope, it create a vector of scope
objects.

scvector = getscope(tg)

See Also getxpcenv | xpctarget.xpc.remscope

How To • “Application and Driver Scripts”

1-196

xpctarget.xpc.getsignal

Purpose Value of target object signal index (not recommended)

Syntax getsignal(target_object, signal index)

Arguments target_object Name of a target object. The default name is tg.

signal_index Index number of the signal.

Description getsignal returns the value of the signal associated with
signal_index.

Note Method xpctarget.xpc.getsignal will be removed in a future
release. Use method SimulinkRealTime.target.getsignal instead.

Examples Get the value of signal index 2.

getsignal(tg, 2)
ans = -3.3869e+006

1-197

xpctarget.xpc.getsignalid

Purpose Signal index or signal property from signal list (not recommended)

Syntax getsignalid(target_object, 'signal_name')
tg.getsignalid('signal_name')

Arguments target_object Name of an existing target object.

signal_name Enter the name of a signal from your Simulink
model. For blocks with a single signal, the
signal_name is equal to the block_name. For
blocks with multiple signals, the Simulink
Real-Time software appends S1, S2 . . . to the
block_name.

Description getsignalid returns the index or name of a signal from the signal list,
based on the path to the signal name. The block names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Simulink Coder uses for code generation.

Note Method xpctarget.xpc.getsignalid will be removed in a future
release. Use method SimulinkRealTime.target.getsignalid instead.

Examples Get the signal index for the single signal from the Simulink block Gain1.

getsignalid(tg, 'Gain1') or tg.getsignalid('Gain1')
ans = 6

See Also xpctarget.xpc.getparamid

How To • “Application and Driver Scripts”

• “Why Does the getparamid Function Return Nothing?”

1-198

xpctarget.xpc.getsignalidsfromlabel

Purpose Return vector of signal indices (not recommended)

Syntax getsignalidsfromlabel(target_object, signal_label)
target_object.getsignalidsfromlabel(signal_label)

Arguments target_object Name of a target object. The default name
is tg.

signal_label Signal label (from Simulink model).

Description getsignalidsfromlabel returns a vector of one or more signal indices
that are associated with the labeled signal, signal_label. This
function assumes that you have labeled the signal for which you request
the index (see the Signal name parameter of the “Signal Properties
Controls”). Note that the Simulink Real-Time software refers to
Simulink signal names as signal labels.

Note Method xpctarget.xpc.getsignalidsfromlabel
will be removed in a future release. Use method
SimulinkRealTime.target.getsignalidsfromlabel instead.

Examples Get the vector of signal indices for a signal labeled Gain.

>> tg.getsignalidsfromlabel('xpcoscGain')
ans =
0

See Also xpctarget.xpc.getsignallabel

1-199

xpctarget.xpc.getsignallabel

Purpose Return signal label (not recommended)

Syntax getsignallabel(target_object, signal_index)
target_object.getsignallabel(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getsignallabel returns the signal label for the specified signal index,
signal_index. signal_label. This function assumes that you have
labeled the signal for which you request the label (see the Signal name
parameter of the “Signal Properties Controls”). Note that the Simulink
Real-Time software refers to Simulink signal names as signal labels.

Note Method xpctarget.xpc.getsignallabel
will be removed in a future release. Use method
SimulinkRealTime.target.getsignallabel instead.

Examples >> getsignallabel(tg, 0)
ans =
xpcoscGain

See Also xpctarget.xpc.getsignalidsfromlabel

1-200

xpctarget.xpc.getsignalname

Purpose Signal name from index list (not recommended)

Syntax getsignalname(target_object, signal_index)
target_object.getsignalname(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getsignalname returns one argument string, signal name, from the
index list for the specified signal index.

Note Method xpctarget.xpc.getsignalname will be removed in a
future release. Use method SimulinkRealTime.target.getsignalname
instead.

Examples Get the signal name of signal ID 2.

[sigName]=getsignalname(tg,2)
sigName =
Gain2

1-201

xpctarget.xpc.load

Purpose Download target application to target computer (not recommended)

Syntax target_object = target_object.load(target_application)
target_object = load(target_object,target_application)

Description target_object = target_object.load(target_application) loads
the application target_application onto the target computer
represented by target_object.

Note Method xpctarget.xpc.load will be removed in a future release.
Use method SimulinkRealTime.target.load instead.

The call returns target_object, updated with the new state of the
target.

target_object = load(target_object,target_application) is an
alternative syntax.

Input
Arguments

target_object

Object of type xpctarget.xpc that represents the target computer.
Before calling this function, make sure that you have started the
target computer with the Simulink Real-Time kernel and have
applied the required host-target communication settings.

Data Types
struct

target_application

Name of the target application, without file extension.
target_application can also contain the absolute path to the
target application, without file extension.

You must build the application in the current working folder
on the host computer. By default, the Simulink Real-Time
software calls xpctarget.xpc.load automatically after the Simulink

1-202

xpctarget.xpc.load

Coder build process completes. If a target application was
previously loaded, before downloading the new target application,
xpctarget.xpc.load unloads the old target application.

If you are running the target application in Standalone mode, a
call to xpctarget.xpc.load has no effect. To load a new application,
you must rebuild the standalone application files with the new
application and transfer the updated files to the target computer
using xpctarget.ftp. Then, restart the target computer with the
new standalone application.

Data Types
char

Examples Load xpcosc

Load the target application xpcosc into target computer TargetPC1,
represented by target object tg. Start the application.

Get the target object.

tg=xpctarget.xpc('TargetPC1')

Simulink Real-Time Object

Connected = Yes
Application = loader

Load the target application.

tg.load('xpcosc')

Simulink Real-Time Object

Connected = Yes
Application = xpcosc
Mode = Real-Time Single-Tasking
Status = stopped
CPUOverload = none

1-203

xpctarget.xpc.load

ExecTime = 0.0000
SessionTime = 918.5713
StopTime = 0.200000
SampleTime = 0.000250
AvgTET = NaN
MinTET = 9999999.000000
MaxTET = 0.000000
ViewMode = 0

TimeLog = Vector(0)
StateLog = Matrix (0 x 2)
OutputLog = Matrix (0 x 2)
TETLog = Vector(0)
MaxLogSamples = 16666
NumLogWraps = 0
LogMode = Normal

Scopes = No Scopes defined
NumSignals = 7
ShowSignals = off

NumParameters = 7
ShowParameters = off

Start the application.

tg.start;

See Also xpctarget.xpc.unload

Related
Examples

• “Application and Driver Scripts”

1-204

xpctarget.xpc.loadparamset

Purpose Restore parameter values saved in specified file (not recommended)

Syntax loadparamset(target_object,'filename')
target_object.loadparamset('filename')

Arguments target_object Name of an existing target object.

filename Enter the name of the file that contains the saved
parameters.

Description loadparamset restores the target application parameter values saved
in the file filename. This file must be located on a local drive of the
target computer. This method assumes that you have a parameter file
from a previous run of the xpctarget.xpc.saveparamset method.

Note Method xpctarget.xpc.loadparamset will be removed in a
future release. Use method SimulinkRealTime.target.loadparamset
instead.

See Also xpctarget.xpc.saveparamset

1-205

xpctarget.xpc.reboot

Purpose Reboot target computer (not recommended)

Syntax MATLAB command line

reboot(target_object)

Target computer command line

reboot

Arguments target_object Name of an existing target object.

Description reboot reboots the target computer, and if a target boot disk is still
present, the Simulink Real-Time kernel is reloaded.

Note Method xpctarget.xpc.reboot will be removed in a future
release. Use method SimulinkRealTime.target.reboot instead.

On the target computer command line, you can use the corresponding
command reboot.

You can also use this method to reboot the target computer back to
Windows® after removing the target boot disk.

Note This method might not work on some target hardware.

See Also xpctarget.xpc.load | xpctarget.xpc.unload

1-206

xpctarget.xpc.remscope

Purpose Remove scope from target computer (not recommended)

Syntax MATLAB command line

remscope(target_object, scope_number_vector)
target_object.remscope(scope_number_vector)
remscope(target_object)
target_object.remscope

Target computer command line

remscope scope_number
remscope 'all'

Arguments target_object Name of a target object. The default name is
tg.

scope_number_vectorVector of existing scope indices listed in the
target object property Scopes.

scope_number Single scope index.

Description If a scope index is not given, the method remscope deletes all scopes on
the target computer. The method remscope has no return value. The
scope object representing the scope on the host computer is not deleted.

Note Method xpctarget.xpc.remscope will be removed in a future
release. Use method SimulinkRealTime.target.remscope instead.

1-207

xpctarget.xpc.remscope

Note that you can only permanently remove scopes that are added with
the method addscope. This is a scope that is outside a model. If you
remove a scope that has been added through a scope block (the scope
block is inside the model), a subsequent run of that model creates the
scope again.

Examples Remove a single scope.

remscope(tg,1)

or

tg.remscope(1)

Remove two scopes.

remscope(tg,[1 2])

or

tg.remscope([1,2])

Remove all scopes.

remscope(tg)

or

1-208

xpctarget.xpc.remscope

tg.remscope

See Also xpctarget.xpc.addscope | xpctarget.xpc.getscope

How To • “Application and Driver Scripts”

1-209

xpctarget.xpc.saveparamset

Purpose Save current target application parameter values (not recommended)

Syntax saveparamset(target_object,'filename')
target_object.saveparamset('filename')

Arguments target_object Name of an existing target object.

filename Enter the name of the file to contain the saved
parameters.

Description saveparamset saves the target application parameter values in the
file filename. This method saves the file on a local drive of the target
computer (C:\ by default). You can later reload these parameters with
the xpctarget.xpc.loadparamset function.

Note Method xpctarget.xpc.saveparamset will be removed in a
future release. Use method SimulinkRealTime.target.saveparamset
instead.

You might want to save target application parameter values if you
change these parameter values while the application is running in
Real-Time mode. Saving these values enables you to easily recreate
target application parameter values from a number of application runs.

See Also xpctarget.xpc.loadparamset

1-210

xpctarget.xpc.set (target application object)

Purpose Change target application object property values (not recommended)

Syntax MATLAB command line

set(target_object)
set(target_object, 'property_name1', 'property_value1',
'property_name2', 'property_value2', . . .)
target_object.set('property_name1', 'property_value1')
set(target_object, property_name_vector,
property_value_vector)
target_object.property_name = property_value

Target computer command line - Commands are limited to the
target object properties stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating_point_number
sampletime = floating_point_number

Arguments target_object Name of a target object.

'property_name' Name of a target object property. Always use
quotation marks.

property_value Value for a target object property. Always
use quotation marks for character strings;
quotation marks are optional for numbers.

Description set sets the properties of the target object. Not all properties are user
writable.

Note Method xpctarget.xpc.set (target application
object) will be removed in a future release. Use method
SimulinkRealTime.target.set instead.

1-211

xpctarget.xpc.set (target application object)

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector. The writable properties for a target object
are listed in the following table. This table includes a description of
the properties:

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

• Parameter updating latency (if the
Double buffer parameter changes
parameter is set in the Simulink
Real-Time Options node of the model
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other

No

1-212

xpctarget.xpc.set (target application object)

Property Description Writable

considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

1-213

xpctarget.xpc.set (target application object)

Property Description Writable

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the
Simulink Real-Time Options pane of
the Configuration Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

Mode Type of Simulink Coder code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

1-214

xpctarget.xpc.set (target application object)

Property Description Writable

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

1-215

xpctarget.xpc.set (target application object)

Property Description Writable

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “Alternative Configuration and
Control Methods” for limitations on target
property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you booted the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

1-216

xpctarget.xpc.set (target application object)

Property Description Writable

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you need
to select the Log Task Execution Time
check box in the Simulink Real-Time
Options pane of the Configuration
Parameters dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

The function set typically does not return a value. However, if called
with an explicit return argument, for example, a = set(target_object,
property_name, property_value), it returns the value of the
properties after the indicated settings have been made.

1-217

xpctarget.xpc.set (target application object)

Examples Get a list of writable properties for a scope object.

set(tg)
ans =

StopTime: {}
SampleTime: {}

ViewMode: {}
LogMode: {}

ShowParameters: {}
ShowSignals: {}

Change the property ShowSignals to on.

tg.set('showsignals', 'on') or set(tg, 'showsignals', 'on')

As an alternative to the method set, use the target object property
ShowSignals. In the MATLAB window, type

tg.showsignals ='on'

See Also get | set | xpctarget.xpc.get (target application object) |
xpctarget.xpcsc.get (scope object) | xpctarget.xpcsc.set
(scope object)

How To • “Application and Driver Scripts”

1-218

xpctarget.xpc.setparam

Purpose Change writable target object parameters (not recommended)

Syntax setparam(target_object, parameter_index, parameter_value)

Arguments target_object Name of an existing target object. The default
name is tg.

parameter_index Index number of the parameter.

parameter_value Value for a target object parameter.

Description Method of a target object. Set the value of the target parameter. This
method returns a structure that stores the parameter index, previous
parameter values, and new parameter values in the following fields:

• parIndexVec

• OldValues

• NewValues

Note Method xpctarget.xpc.setparam will be removed in a future
release. Use method SimulinkRealTime.target.setparam instead.

Examples Set the value of parameter index 5 to 100.

setparam(tg, 5, 100)
ans =
parIndexVec: 5
OldValues: 400
NewValues: 100

Simultaneously set values for multiple parameters. Use the cell array
format to specify new parameter values.

setparam(tg, [1 5],{10,100})

1-219

xpctarget.xpc.setparam

ans =
parIndexVec: [1 5]
OldValues: {[2] [4]}
NewValues: {[10] [100]}

1-220

xpctarget.xpc.start (target application object)

Purpose Start execution of target application on target computer (not
recommended)

Syntax MATLAB command line

start(target_object)
target_object.start
+target_object

Target computer command line

start

Arguments target_object Name of a target object. The default name is tg.

Description Method of both target and scope objects. Starts execution of the
target application represented by the target object. Before using this
method, the target application must be created and loaded on the target
computer. If a target application is running, this command has no effect.

Note Method xpctarget.xpc.start (target application
object) will be removed in a future release. Use method
SimulinkRealTime.target.start instead.

Examples Start the target application represented by the target object tg.

+tg
tg.start
start(tg)

See Also xpctarget.xpc.stop (target application object)
| xpctarget.xpc.load | xpctarget.xpc.unload |
xpctarget.xpcsc.stop (scope object)

1-221

xpctarget.xpc.stop (target application object)

Purpose Stop execution of target application on target computer (not
recommended)

Syntax MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target computer command line

stop

Arguments target_object Name of a target object.

Description Stops execution of the target application represented by the target
object. If the target application is stopped, this command has no effect.

Note Method xpctarget.xpc.stop (target application
object) will be removed in a future release. Use method
SimulinkRealTime.target.stop instead.

Examples Stop the target application represented by the target object tg.

stop(tg) or tg.stop or -tg

See Also xpctarget.xpc.start (target application object) |
xpctarget.xpcsc.stop (scope object) | xpctarget.xpcsc.start
(scope object)

1-222

xpctarget.xpc.targetping

Purpose Test communication between host and target computers (not
recommended)

Syntax targetping(target_object)
target_object.targetping

Arguments target_object Name of a target object.

Description Method of a target object. Use this method to ping a target computer
from the host computer. This method returns success if the Simulink
Real-Time kernel is loaded and running and communication is working
between host and target, otherwise it returns failed.

This function works with both RS-232 and TCP/IP communication.

Note

• Method xpctarget.xpc.targetping will be removed in a
future release. Use command slrtpingtargetor method
SimulinkRealTime.target.ping instead.

• RS-232 Host-Target communication mode will be removed in a future
release. Use TCP/IP instead.

Examples Ping the communication between the host and the target object tg.

targetping(tg) or tg.targetping

See Also xpctarget.xpc

1-223

xpctarget.xpc.unload

Purpose Remove current target application from target computer (not
recommended)

Syntax unload(target_object)
target_object.unload

Arguments target_object Name of a target object that represents a target
application.

Description Method of a target object. The kernel goes into loader mode and is ready
to download new target application from the host computer.

Note Method xpctarget.xpc.unload will be removed in a future
release. Use method SimulinkRealTime.target.unload instead.

If you are running in StandAlone mode, this command has no effect. To
unload and reload a new application, you must rebuild the standalone
application with the new application, then reboot the target computer
with the updated standalone application.

Examples Unload the target application represented by the target object tg.

unload(tg) or tg.unload

See Also xpctarget.xpc.load | xpctarget.xpc.reboot

1-224

xpctarget.xpcfs Class

Purpose Control and access properties of file scopes (not recommended)

Description The scope gets a data package from the kernel and stores the data in
a file in the target computer file system. Depending on the setting of
WriteMode, the file size is or is not continuously updated. You can then
transfer the data to another computer for examination or plotting.

Note Class xpctarget.xpcfs will be removed in a future release. Use
class SimulinkRealTime.fileScope instead.

Methods

These methods are inherited from xpctarget.xpcsc Class.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware trigger start of data acquisition for scope(s)

Properties

These properties are inherited from xpctarget.xpcsc Class.

1-225

xpctarget.xpcfs Class

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

1-226

xpctarget.xpcfs Class

Property Description Writable

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

1-227

xpctarget.xpcfs Class

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

These properties are specific to class xpcfs.

Property Description Writeable

AutoRestart Values are 'on' and 'off'.

For file scopes, enable the file scope
to collect data up to the number of
samples (NumSamples), then start
over again, appending the new data
to the end of the signal data file.
Clear the AutoRestart check box
to have the file scope collect data up
to Number of samples, then stop.

If the named signal data file
already exists when you start the

No

1-228

xpctarget.xpcfs Class

Property Description Writeable

target application, the software
overwrites the old data with the
new signal data.

To use the DynamicFileName
property, set AutoRestart to 'on'
first.

For host or target scopes, this
parameter has no effect.

DynamicFileNameValues are 'on' and 'off'. By
default, the value is 'off'.

Enable the ability to dynamically
create multiple log files for file
scopes.

To use DynamicFileName, set
AutoRestart to 'on' first. When
you enable DynamicFileName,
configure Filename to create
incrementally numbered file names
for the multiple log files. Failure to
do so causes an error when you try
to start the scope.

You can enable the creation of up to
99999999 files (<%%%%%%%%>.dat).
The length of a file name, including
the specifier, cannot exceed eight
characters.

For host or target scopes, this
parameter has no effect.

Yes

1-229

xpctarget.xpcfs Class

Property Description Writeable

Filename Provide a name for the file to
contain the signal data. By
default, the target computer writes
the signal data to a file named
C:\data.dat for scope blocks. Note
that for file scopes created through
the MATLAB interface, no name
is initially assigned to FileName.
After you start the scope, the
software assigns a name for the file
to acquire the signal data. This
name typically consists of the scope
object name, ScopeId, and the
beginning letters of the first signal
added to the scope.

If you set DynamicFileName
and AutoRestart to 'on',
configure Filename to dynamically
increment. Use a base file name,
an underscore (_), and a < >
specifier. Within the specifier,
enter one to eight % symbols. Each
symbol % represents a decimal
location in the file name. The
specifier can appear anywhere
in the file name. For example,
the following value for Filename,
C:\work\file_<%%%>.dat creates
file names with the following
pattern:

file_001.dat
file_002.dat
file_003.dat

No

1-230

xpctarget.xpcfs Class

Property Description Writeable

The last file name of this series will
be file_999.dat. If the function
is still logging data when the last
file name reaches its maximum
size, the function starts from the
beginning and overwrites the first
file name in the series. If you do
not retrieve the data from existing
files before they are overwritten,
the data is lost.

For host or target scopes, this
parameter has no effect.

MaxWriteFileSizeProvide the maximum size of
Filename, in bytes. This value
must be a multiple of WriteSize.
Default is 536870912.

When the size of a log file reaches
MaxWriteFileSize, the software
creates a subsequently numbered
file name, and continues logging
data to that file, up until the
highest log file number you have
specified. If the software cannot
create additional log files, it
overwrites the first log file.

For host or target scopes, this
parameter has no effect.

Yes

1-231

xpctarget.xpcfs Class

Property Description Writeable

Mode

Note The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter
has no effect.

Yes

WriteMode For file scopes, specify when a
file allocation table (FAT) entry
is updated. Values are 'Lazy'
or 'Commit'. Both modes write
the signal data to the file. With
'Commit' mode, each file write
operation simultaneously updates
the FAT entry for the file. This
mode is slower, but the file system
maintains the actual file size. With
'Lazy' mode, the FAT entry is
updated only when the file is closed
and not during each file write
operation. This mode is faster, but
if the system crashes before the file
is closed, the file system might not
know the actual file size (the file
contents, however, will be intact).

For host or target scopes, this
parameter has no effect.

Yes

WriteSize Enter the block size, in bytes, of
the data chunks. This parameter

Yes

1-232

xpctarget.xpcfs Class

Property Description Writeable

specifies that a memory buffer,
of length number of samples
(NumSamples), collect data in
multiples of WriteSize. By default,
this parameter is 512 bytes, which
is the typical disk sector size. Using
a block size that is the same as
the disk sector size provides better
performance.

If you experience a system crash,
you can expect to lose an amount of
data the size of WriteSize.

For host or target scopes, this
parameter has no effect.

1-233

xpctarget.xpcsc.addsignal

Purpose Add signals to scope represented by scope object (not recommended)

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)
scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object_vector Name of a single scope object or the name
of a vector of scope objects.

signal_index_vector For one signal, use a single number. For
two or more signals, enclose numbers in
brackets and separate with commas.

scope_index Single scope index.

Description addsignal adds signals to a scope object. The signals must be specified
by their indices, which you can retrieve using the target object method
getsignalid. If the scope_object_vector has two or more scope
objects, the same signals are assigned to each scope.

Note

• You must stop the scope before you can add a signal to it.

• Method xpctarget.xpcsc.addsignal will be removed in a future
release. Use methods SimulinkRealTime.targetScope.addsignal,
SimulinkRealTime.hostScope.addsignal, and
SimulinkRealTime.fileScope.addsignal instead.

1-234

xpctarget.xpcsc.addsignal

Examples Add signals 0 and 1 from the target object tg to the scope object sc1.
The signals are added to the scope, and the scope object property
Signals is updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

Display a list of properties and values for the scope object sc1 with the
property Signals, as shown below.

sc1.Signals
Signals = 1 : Signal Generator

0 : Integrator1

Another way to add signals without using the method addsignal is to
use the scope object method set.

set(sc1,'Signals', [0,1]) or sc1.set('signals',[0,1]

Or, to directly assign signal values to the scope object property Signals,

sc1.signals = [0,1]

See Also xpctarget.xpcsc.remsignal | xpctarget.xpcsc.set (scope
object) | xpctarget.xpc.addscope | xpctarget.xpc.getsignalid

How To • “Target Scope Usage”

• “Host Scope Usage”

• “File Scope Usage”

• “Application and Driver Scripts”

1-235

xpctarget.xpcsc.get (scope object)

Purpose Return property values for scope objects (not recommended)

Syntax get(scope_object_vector)
get(scope_object_vector, 'scope_object_property')
get(scope_object_vector, scope_object_property_vector)

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope or name of a vector
of scope objects.

scope_object_property Name of a scope object property.

Description get gets the value of readable scope object properties from a scope object
or the same property from each scope object in a vector of scope objects.
Scope object properties let you select signals to acquire, set triggering
modes, and access signal information from the target application. You
can view and change these properties using scope object methods.

Note Method xpctarget.xpcsc.get (scope object) will be removed
in a future release. Use methods SimulinkRealTime.targetScope.get,
SimulinkRealTime.hostScope.get, and
SimulinkRealTime.fileScope.get instead.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

1-236

xpctarget.xpcsc.get (scope object)

Property Description Writable

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

1-237

xpctarget.xpcsc.get (scope object)

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

1-238

xpctarget.xpcsc.get (scope object)

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples List the readable properties, along with their current values. This is
given in the form of a structure whose field names are the property
names and whose field values are property values.

get(sc)

List the value for the scope object property Type. Notice that the
property name is a string, in quotation marks, and is not case sensitive.

get(sc,'type')
ans = Target

See Also get | set | xpctarget.xpcsc.set (scope object) |
xpctarget.xpc.set (target application object)

1-239

xpctarget.xpcsc Class

Purpose Base class for the scope classes (not recommended)

Description This is the base class for the scope classes, xpctarget.xpcfs Class,
xpctarget.xpcschost Class, and xpctarget.xpcsctg Class. All
methods and properties are inherited by the derived classes. When
a mixture of derived classes are stored in a scope collection, only
the base class methods and properties are available. The scope class
constructors are Private and are not intended to be called from the
MATLAB prompt.

Note Class xpctarget.xpcsc will be removed in a future
release. Use classes SimulinkRealTime.targetScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.fileScope
instead.

A scope acquires data from the target application and displays that
data on the target computer, uploads the data to the host computer, or
stores that data in a file in the target computer file system. The target,
host, or file scopes run on the target computer.

Methods

These methods are inherited by the derived classes.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

1-240

xpctarget.xpcsc Class

Method Description

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware trigger start of data acquisition for scope(s)

Properties

These properties are inherited by the derived classes.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the

Yes

1-241

xpctarget.xpcsc Class

Property Description Writable

AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.

Yes

1-242

xpctarget.xpcsc Class

Property Description Writable

Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

1-243

xpctarget.xpcsc.remsignal

Purpose Remove signals from scope represented by scope object (not
recommended)

Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional, and if it
is left out all signals are removed.

signal_index Single signal index.

Description remsignal removes signals from a scope object. The signals must be
specified by their indices, which you can retrieve using the target object
method getsignalid. If the scope_index_vector has two or more
scope objects, the same signals are removed from each scope. The
argument signal_index is optional; if it is left out, all signals are
removed.

1-244

xpctarget.xpcsc.remsignal

Note

• You must stop the scope before you can remove a signal from it.

• Method xpctarget.xpcsc.remsignal will be removed in a future
release. Use methods SimulinkRealTime.targetScope.remsignal,
SimulinkRealTime.hostScope.remsignal, and
SimulinkRealTime.fileScope.remsignal instead.

Examples Remove signals 0 and 1 from the scope represented by the scope object
sc1.

sc1.get('signals')
ans= 0 1

Remove signals from the scope on the target computer with the scope
object property Signals updated.

remsignal(sc1,[0,1])

or

sc1.remsignal([0,1])

See Also xpctarget.xpcsc.remsignal | xpctarget.xpc.getsignalid

1-245

xpctarget.xpcsc.set (scope object)

Purpose Change property values for scope objects (not recommended)

Syntax set(scope_object_vector)
set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)
scope_object_vector.set('property_name1', property_value1,
. . .)
set(scope_object, 'property_name', property_value, . . .)

Arguments scope_object Name of a scope object or a vector of scope objects.

'property_name'Name of a scope object property. Always use
quotation marks.

property_value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

Description Method for scope objects. Sets the properties of the scope object. Not
all properties are user writable. Scope object properties let you select
signals to acquire, set triggering modes, and access signal information
from the target application. You can view and change these properties
using scope object methods.

Note Method xpctarget.xpcsc.set (scope object) will be removed
in a future release. Use methods SimulinkRealTime.targetScope.set,
SimulinkRealTime.hostScope.set, and
SimulinkRealTime.fileScope.set instead.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

1-246

xpctarget.xpcsc.set (scope object)

The function set typically does not return a value. However,
if called with an explicit return argument, for example, a =
set(target_object, property_name, property_value), it returns
the values of the properties after the indicated settings have been made.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope

Yes

1-247

xpctarget.xpcsc.set (scope object)

Property Description Writable

collects data only up to Number of Samples,
then stops.

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is

Yes

1-248

xpctarget.xpcsc.set (scope object)

Property Description Writable

acquired one sample after the last sample of the
triggering scope.

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)
ans=

NumSamples: {}
Decimation: {}

TriggerMode: {5x1 cell}
TriggerSignal: {}
TriggerLevel: {}
TriggerSlope: {4x1 cell}
TriggerScope: {}

TriggerSample: {}

1-249

xpctarget.xpcsc.set (scope object)

Signals: {}
NumPrePostSamples: {}

Mode: {5x1 cell}
YLimit: {}

Grid: {}

The property value for the scope object sc1 is changed to on:

sc1.set('grid', 'on') or set(sc1, 'grid', 'on')

See Also get | set | xpctarget.xpcsc.get (scope object) |
xpctarget.xpc.set (target application object) |
xpctarget.xpc.get (target application object)

1-250

xpctarget.xpcsc.start (scope object)

Purpose Start execution of scope on target computer (not recommended)

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector
start(getscope((target_object, signal_index_vector))

Target computer command line

startscope scope_index
startscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for a scope object. Starts a scope on the target computer
represented by a scope object on the host computer. This method might
not start data acquisition, which depends on the trigger settings. Before
using this method, you must create a scope. To create a scope, use the
target object method addscope or add Simulink Real-Time scope blocks
to your Simulink model.

1-251

xpctarget.xpcsc.start (scope object)

Note Method xpctarget.xpcsc.start (scope
object) will be removed in a future release. Use
methods SimulinkRealTime.targetScope.start,
SimulinkRealTime.hostScope.start, and
SimulinkRealTime.fileScope.start instead.

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

1-252

xpctarget.xpcsc.start (scope object)

start(getscope(tg)) or start(tg.getscope)

See Also xpctarget.xpc.getscope | xpctarget.xpc.stop (target
application object) | xpctarget.xpcsc.stop (scope object)

1-253

xpctarget.xpcsc.stop (scope object)

Purpose Stop execution of scope on target computer (not recommended)

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object
stop(getscope(target_object, signal_index_vector))

Target computer command line

stopscope scope_index
stopscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for scope objects. Stops the scopes represented by the scope
objects.

1-254

xpctarget.xpcsc.stop (scope object)

Note Method xpctarget.xpcsc.stop (scope
object) will be removed in a future release. Use
methods SimulinkRealTime.targetScope.stop,
SimulinkRealTime.hostScope.stop, and
SimulinkRealTime.fileScope.stop instead.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the
command

allscopes = getscope(tg) or allscopes = tg.getscope.
stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

See Also xpctarget.xpc.getscope | xpctarget.xpc.stop (target
application object) | xpctarget.xpc.start (target application
object) | xpctarget.xpcsc.start (scope object)

1-255

xpctarget.xpcsc.trigger

Purpose Software-trigger start of data acquisition for scopes (not recommended)

Syntax trigger(scope_object_vector) or scope_object_vector.trigger

Arguments scope_object_vector Name of a single scope object, name of a
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

Description Method for a scope object. If the scope object property TriggerMode has
a value of 'software', this function triggers the scope represented by
the scope object to acquire the number of data points in the scope object
property NumSamples.

Note Method xpctarget.xpcsc.trigger will be removed in a future
release. Use methods SimulinkRealTime.targetScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.fileScope.trigger instead.

Note that only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition of one set
of samples, and plot data.

sc1 = tg.addscope('host',1) or sc1=addscope(tg,'host',1)
sc1.triggermode = 'software'
tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)
plot(sc1.time, sc1.data)

1-256

xpctarget.xpcsc.trigger

sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes
allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes
allscopes.trigger or trigger(allscopes)

1-257

xpctarget.xpcschost Class

Purpose Control and access properties of host scopes (not recommended)

Description The scope gets a data package from the kernel, waits for an upload
command from the host computer, and uploads the data to the host.
The host computer displays the data using a scope viewer or other
MATLAB functions.

Note Class xpctarget.xpcschost will be removed in a future release.
Use class SimulinkRealTime.hostScope instead.

Methods

These methods are inherited from xpctarget.xpcsc Class.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware trigger start of data acquisition for scope(s)

Properties

These properties are inherited from xpctarget.xpcsc Class.

1-258

xpctarget.xpcschost Class

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

1-259

xpctarget.xpcschost Class

Property Description Writable

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

1-260

xpctarget.xpcschost Class

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

These properties are specific to class xpcschost.

Property Description Writeable

Data Contains the output data for a
single data package from a scope.

For target or file scopes, this
parameter has no effect.

No

Time Contains the time data for a single
data package from a scope.

For target or file scopes, this
parameter has no effect.

No

1-261

xpctarget.xpcsctg Class

Purpose Control and access properties of target scopes (not recommended)

Description The kernel acquires a data package and the scope displays the data on
the target computer screen. Depending on the setting of DisplayMode,
the data may be displayed numerically or graphically by a redrawing,
sliding, and rolling display.

Note Class xpctarget.xpcsctg will be removed in a future release.
Use class SimulinkRealTime.targetScope instead.

Methods

These methods are inherited from xpctarget.xpcsc Class.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware trigger start of data acquisition for scope(s)

Properties

These properties are inherited from xpctarget.xpcsc Class.

1-262

xpctarget.xpcsctg Class

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

1-263

xpctarget.xpcsctg Class

Property Description Writable

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

1-264

xpctarget.xpcsctg Class

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

These properties are specific to class xpcsctg.

Property Description Writeable

DisplayMode For target scopes, indicate how a
scope displays the signals. Values
are 'Numerical', 'Redraw'
(default), 'Sliding', and
'Rolling'.

For host or file scopes, this
parameter has no effect.

Yes

1-265

xpctarget.xpcsctg Class

Property Description Writeable

.

Grid Values are 'on' and 'off'.

For host or file scopes, this
parameter has no effect.

Yes

Mode

Note The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter
has no effect.

Yes

YLimit Minimum and maximum y-axis
values. This property can be set to
'auto'.

For host or file scopes, this
parameter has no effect.

Yes

1-266

xpctargetping

Purpose Tests communication between host and target computers (not
recommended)

Syntax xpctargetping

xpctargetping target_computer_name
xpctargetping TcpIp TargetAddress TargetPort
xpctargetping RS232 HostPort Baudrate

Description Returns success if the Simulink Real-Time kernel is loaded and
running, and communication is working between the host and target
computers. Otherwise, returns failed.

Note Command xpctargetping will be removed in a
future release. Use command slrtpingtarget or method
SimulinkRealTime.target.ping instead.

xpctargetping without an argument returns success if the host
computer and the default target computer can communicate using the
settings for that computer. Otherwise, returns failed.

xpctargetping target_computer_name returns success if
the host computer can communicate with target computer
target_computer_name using the settings for that computer.
Otherwise, returns failed.

Input
Arguments

target_computer_name - Name of specific target computer
TargetPC1 | TargetPC2 | ...

Name property of a particular target computer environment object.
The default name is TargetPC1.

When using function form, enclose the argument
(target_computer_name,) in single quotes ('TargetPC1').

1-267

xpctargetping

Example: TargetPC1

Data Types
char

Examples Check communication with default target computer

xpctargetping

Check communication with specified target computer

xpctargetping TargetPC1

1-268

xpctargetspy

Purpose Open Simulink Real-Time display window on host computer (not
recommended)

Syntax xpctargetspy
xpctargetspy(target_object)
xpctargetspy('target_object_name')

Arguments target_object Variable name to reference the target object.

target_object_name Target object name as specified in the Simulink
Real-Time Explorer.

Description This graphical user interface (GUI) allows you to upload displayed
data from the target computer. By default, xpctargetspy opens a
Real-Time Simulink Real-Time display window for the target object, tg.
If you have multiple target computers in your system, you can call the
xpctargetspy function for a particular target object, target_object.

Note Command xpctargetspy will be removed in a future release.
Use command method SimulinkRealTime.target.viewTargetScreen
instead.

If you have one target computer, or if you designate a target computer
as the default one in your system, use the syntax

xpctargetspy

If you have specified a target computer object in the Simulink Real-Time
Explorer, you can use the following syntax.

target_object=xpctarget.xpc('target_object_name')

Then, use the following syntax.

xpctargetspy(target_object)

1-269

xpctargetspy

The behavior of xpctargetspy depends on the value for the environment
property TargetScope:

• If TargetScope is enabled, a single graphics screen is uploaded.
The screen is not continually updated because of a higher data
volume when a target graphics card is in VGA mode. You must
explicitly request an update. To manually update the host screen
with another target screen, move the pointer into the Real-Time
Simulink Real-Time display window and right-click to select Update
Simulink Real-Time Target Screen.

• If TargetScope is disabled, text output is transferred once every
second to the host and displayed in the window.

Examples To open the Real-Time Simulink Real-Time display window for the
default target computer, tg, in the MATLAB window, type

xpctargetspy

To open the Real-Time Simulink Real-Time display window for target
computer 'TargetPC1' in the MATLAB window, type

tg1=xpctarget.xpc('TargetPC1');
xpctargetspy(tg1)

1-270

xpctest

Purpose Test Simulink Real-Time installation (not recommended)

Syntax xpctest
xpctest('noreboot')
xpctest('-noreboot')
xpctest('target_name')
xpctest('target_name','noreboot')
xpctest('target_name','-noreboot')

Arguments 'target_name' Name of target computer to test.

'noreboot' Only one possible option. Skips the reboot test.
Use this option if the target hardware does not
support software rebooting. Value is 'noreboot'
or '-noreboot'.

Description xpctest is a series of tests to check the basic functioning of Simulink
Real-Time.

Note Command xpctest will be removed in a future release. Use
command slrttest instead.

xpctest tests the following functionality:

• Initiate communication between the host and target computers.

• Reboot the target computer to reset the target environment.

• Build a target application on the host computer.

• Download a target application to the target computer.

• Check communication between the host and target computers using
commands.

• Execute a target application.

1-271

xpctest

• Compare the results of a simulation and the target application run.

xpctest('noreboot') or xpctest('-noreboot') skips the reboot test
on the default target computer. Use this option if target hardware does
not support software rebooting.

xpctest('target_name') runs the tests on the target computer
identified by 'target_name'.

xpctest('target_name','noreboot') or
xpctest('target_name','-noreboot') runs the tests on the target
computer identified by 'target_name', but skips the reboot test.

Examples If the target hardware does not support software rebooting, or to skip
the reboot test, in the MATLAB window, type

xpctest('-noreboot')

To run xpctest on a specified target computer, for example TargetPC1,
type

xpctest('TargetPC1')

How To • “Run Confidence Test on Configuration”

• “Test 1: Ping Using System Ping”

1-272

xpcwwwenable

Purpose Disconnect target computer from current client application (not
recommended)

Syntax xpcwwwenable
xpcwwwenable('target_obj_name')

Description xpcwwwenable disconnects the target application from the MATLAB
interface so you can connect to the Web browser.

Note Command xpcwwwenable will be removed in a future release.
Use method SimulinkRealTime.target.close instead.

You can also use this function to connect to the MATLAB interface after
using a Web browser, or to switch to another Web browser.

xpcwwwenable('target_obj_name') disconnects the target application
on target_obj_name (for example 'TargetPC1')from the MATLAB
interface.

1-273

xpcwwwenable

1-274

2

Simulink Real-Time API
Reference for C

• “C API Error Messages” on page 2-2

• “C API Structures and Functions — Alphabetical List” on page 2-6

2 Simulink® Real-Time™ API Reference for C

C API Error Messages
The header file matlabroot\toolbox\rtw\targets\xpc\api\xpcapiconst.h
defines these error messages.

Message Description

ECOMPORTACCFAIL COM port access failed

ECOMPORTISOPEN COM port is already opened

ECOMPORTREAD ReadFile failed while reading from COM port

ECOMPORTWRITE WriteFile failed while writing to COM port

ECOMTIMEOUT timeout while receiving: check serial link

EFILEOPEN Error opening file

EFILEREAD Error reading file

EFILERENAME Error renaming file

EFILEWRITE Error writing file

EINTERNAL Internal Error

EINVADDR Invalid IP Address

EINVARGUMENT Invalid Argument

EINVALIDMODEL Model name does not match saved value

EINVBAUDRATE Invalid value for baudrate

EINVCOMMTYP Invalid communication type

EINVCOMPORT COM port can only be 0 or 1 (COM1 or COM2)

EINVDECIMATION Decimation must be positive

EINVFILENAME Invalid file name

EINVINSTANDALONE
Command not valid for StandAlone

EINVLGDATA Invalid lgdata structure

EINVLGINCR Invalid increment for value equidistant
logging

EINVLGMODE Invalid Logging mode

EINVLOGID Invalid log identifier

2-2

C API Error Messages

Message Description

EINVNUMPARAMS Invalid number of parameters

EINVNUMSIGNALS Invalid number of signals

EINVPARIDX Invalid parameter index

EINVPORT Invalid Port Number

EINVSCIDX Invalid Scope Index

EINVSCTYPE Invalid Scope type

EINVSIGIDX Invalid Signal index

EINVTRIGMODE Invalid trigger mode

EINVTRIGSLOPE Invalid Trigger Slope Value

EINVTRSCIDX Invalid Trigger Scope index

EINVNUMSAMP Number of samples must be nonnegative

EINVSTARTVAL Invalid value for "start"

EINVTFIN Invalid value for TFinal

EINVTS Invalid value for Ts (must be between 8e-6
and 10)

EINVWSVER Invalid Winsock version (1.1 needed)

EINVXPCVERSION Target has an invalid version of Simulink
Real-Time

ELOADAPPFIRST Load the application first

ELOGGINGDISABLED Logging is disabled

EMALFORMED Malformed message

EMEMALLOC Memory allocation error

ENODATALOGGED No data has been logged

ENOERR No error

ENOFREEPORT No free Port in C API

ENOMORECHANNELS No more channels in scope

ENOSPACE Space not allocated

EOUTPUTLOGDISABLEDOutput Logging is disabled

2-3

2 Simulink® Real-Time™ API Reference for C

Message Description

EPARNOTFOUND Parameter not found

EPARSIZMISMATCH Parameter Size mismatch

EPINGCONNECT Could not connect to Ping socket

EPINGPORTOPEN Error opening Ping port

EPINGSOCKET Ping socket error

EPORTCLOSED Port is not open

ERUNSIMFIRST Run simulation first

ESCFINVALIDFNAME Invalid filename tag used for dynamic file
name

ESCFISNOTAUTO Autorestart must be enabled for dynamic file
names

ESCFNUMISNOTMULT MaxWriteFileSize must be a multiple of the
writesize

ESCTYPENOTTGT Scope Type is not "Target"

ESIGLABELNOTFOUND Signal label not found

ESIGLABELNOTUNIQUEAmbiguous signal label (signal labels are not
unique)

ESIGNOTFOUND Signal not found

ESOCKOPEN Socket Open Error

ESTARTSIMFIRST Start simulation first

ESTATELOGDISABLED State Logging is disabled

ESTOPSCFIRST Stop scope first

ESTOPSIMFIRST Stop simulation first

ETCPCONNECT TCP/IP Connect Error

ETCPREAD TCP/IP Read Error

ETCPTIMEOUT TCP/IP timeout while receiving data

ETCPWRITE TCP/IP Write error

ETETLOGDISABLED TET Logging is disabled

2-4

C API Error Messages

Message Description

ETGTMEMALLOC Target memory allocation failed

ETIMELOGDISABLED Time Logging is disabled

ETOOMANYSAMPLES Too Many Samples requested

ETOOMANYSCOPES Too many scopes are present

ETOOMANYSIGNALS Too many signals in Scope

EUNLOADAPPFIRST Unload the application first

EUSEDYNSCOPE Use DYNAMIC_SCOPE flag at compile time

EWRITEFILE LoadDLM: WriteFile Error

EWSINIT WINSOCK: Initialization Error

EWSNOTREADY Winsock not ready

2-5

2 Simulink® Real-Time™ API Reference for C

C API Structures and Functions — Alphabetical List

2-6

dirStruct

Purpose Type definition for file system folder information structure

Syntax typedef struct {
char Name[8];
char Ext[3];
char Day;
int Month;
int Year;
int Hour;
int Min;
int isDir;
unsigned long Size;

} dirStruct;

Fields Name This value contains the name of the file or
folder.

Ext This value contains the file type of the
element, if the element is a file (isDir is 0).
If the element is a folder (isDir is 1), this
field is empty.

Day This value contains the day the file or folder
was last modified.

Month This value contains the month the file or
folder was last modified.

Year This value contains the year the file or folder
was last modified.

Hour This value contains the hour the file or folder
was last modified.

Min This value contains the minute the file or
folder was last modified.

2-7

dirStruct

isDir This value indicates if the element is a file
(0) or folder (1). If it is a folder, Bytes has a
value of 0.

Size This value contains the size of the file in
bytes. If the element is a folder, this value
is 0.

Description The dirStruct structure contains information for a folder in the file
system.

See Also API function xPCFSDirItems

2-8

diskinfo

Purpose Type definition for file system disk information structure

Syntax typedef struct {
char Label[12];
char DriveLetter;
char Reserved[3];
unsigned int SerialNumber;
unsigned int FirstPhysicalSector;
unsigned int FATType;
unsigned int FATCount;
unsigned int MaxDirEntries;
unsigned int BytesPerSector;
unsigned int SectorsPerCluster;
unsigned int TotalClusters;
unsigned int BadClusters;
unsigned int FreeClusters;
unsigned int Files;
unsigned int FileChains;
unsigned int FreeChains;
unsigned int LargestFreeChain;

} diskinfo;

Fields Label This value contains the zero-terminated
string that contains the volume label. The
string is empty if the volume has no label.

DriveLetter This value contains the drive letter, in
uppercase.

Reserved Reserved.

SerialNumber This value contains the volume serial
number.

FirstPhysicalSector This value contains the logical block
addressing (LBA) address of the logical drive
boot record. For 3.5-inch disks, this value is 0.

2-9

diskinfo

FATType This value contains the type of file system
found. It can contain 12 , 16 , or 32 for
FAT-12, FAT-16, or FAT-32 volumes,
respectively.

FATCount This value contains the number of FAT
partitions on the volume.

MaxDirEntries This value contains the size of the root folder.
For FAT-32 systems, this value is 0.

BytesPerSector This value contains the sector size. This
value is most likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the
smallest unit of storage that can be allocated
to a file.

TotalClusters This value contains the number of file storage
clusters on the volume.

BadClusters This value contains the number of clusters
that have been marked as bad. These clusters
are unavailable for file storage.

FreeClusters This value contains the number of clusters
that are currently available for storage.

Files This value contains the number of files,
including folders, on the volume. This
number excludes the root folder and files that
have an allocated file size of 0.

FileChains This value contains the number of contiguous
cluster chains. On a completely unfragmented
volume, this value is identical to the value
of Files.

2-10

diskinfo

FreeChains This value contains the number of contiguous
cluster chains of free clusters. On a
completely unfragmented volume, this value
is 1.

LargestFreeChain This value contains the maximum allocated
file size, in number of clusters, for a newly
allocated contiguous file. On a completely
unfragmented volume, this value is identical
to FreeClusters.

Description The diskinfo structure contains information for file system disks.

See Also API function xPCFSDiskInfo

2-11

fileinfo

Purpose Type definition for file information structure

Syntax typedef struct {
int FilePos;
int AllocatedSize;
int ClusterChains;
int VolumeSerialNumber;
char FullName[255];
}fileinfo;

Fields FilePos This value contains the current file pointer.

AllocatedSize This value contains the currently allocated
file size.

ClusterChains This value indicates how many separate
cluster chains are allocated for the file.

VolumeSerialNumber This value holds the serial number of the
volume the file resides on.

FullName This value contains a copy of the complete
path name of the file. This field is valid only
while the file is open.

Description The fileinfo structure contains information for files in the file system.

See Also xPCFSFileInfo

2-12

lgmode

Purpose Type definition for logging options structure

Syntax typedef struct {
int mode;
double incrementvalue;

} lgmode;

Fields mode This value indicates the type of logging you want.
Specify LGMOD_TIME for time-equidistant logging.
Specify LGMOD_VALUE for value-equidistant
logging.

incrementvalue If you set mode to LGMOD_VALUE for
value-equidistant data, this option specifies
the increment (difference in amplitude) value
between logged data points. A data point is
logged only when an output signal or a state
changes by incrementvalue.

If you set mode to LGMOD_TIME, incrementvalue
is ignored.

Description The lgmode structure specifies data logging options. The mode variable
accepts either the numeric values 0 or 1 or their equivalent constants
LGMOD_TIME or LGMOD_VALUE from xpcapiconst.h.

See Also API functions xPCSetLogMode, xPCGetLogMode

2-13

scopedata

Purpose Type definition for scope data structure

Syntax typedef struct {
int number;
int type;
int state;
int signals[10];
int numsamples;
int decimation;
int triggermode;
int numprepostsamples;
int triggersignal
int triggerscope;
int triggerscopesample;
double triggerlevel;
int triggerslope;

} scopedata;

Fields number The scope number.

type Determines whether the scope is displayed
on the host computer or on the target
computer. Values are one of the following:

1 Host

2 Target

state Indicates the scope state. Values are one of
the following:

0 Waiting to start

1 Scope is waiting for a trigger

2 Data is being acquired

3 Acquisition is finished

4 Scope is stopped (interrupted)

2-14

scopedata

5 Scope is preacquiring data

signals List of signal indices from the target object
to display on the scope.

numsamples Number of contiguous samples captured
during the acquisition of a data package.

decimation A number, N, meaning every Nth sample is
acquired in a scope window.

triggermode Trigger mode for a scope. Values are one of
the following:

0 FreeRun (default)

1 Software

2 Signal

3 Scope

numprepostsamples If this value is less than 0, this is the number
of samples to be saved before a trigger event.
If this value is greater than 0, this is the
number of samples to skip after the trigger
event before data acquisition begins.

triggersignal If triggermode is 2 (Signal), identifies the
block output signal to use for triggering
the scope. Identify the signal with a signal
index.

triggerscope If triggermode is 3 (Scope), identifies the
scope to use for a trigger. A scope can be set
to trigger when another scope is triggered.

triggerscopesample If triggermode is 3 (Scope), specifies the
number of samples to be acquired by the
triggering scope before triggering a second
scope. This must be a nonnegative value.

2-15

scopedata

triggerlevel If triggermode is 2 (Signal), indicates the
value the signal has to cross to trigger the
scope to start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

triggerslope If triggermode is 2 (Signal), indicates
whether the trigger is on a rising or falling
signal. Values are:

0 Either rising or falling (default)

1 Rising

2 Falling

Description The scopedata structure holds the data about a scope used in the
functions xPCGetScope and xPCSetScope. In the structure, the fields
are as in the various xPCGetSc* functions (for example, state is as in
xPCScGetState, signals is as in xPCScGetSignals, etc.). The signal
vector is an array of the signal identifiers, terminated by -1.

See Also API functions xPCSetScope, xPCGetScope, xPCScGetType,
xPCScGetState, xPCScGetSignals, xPCScGetNumSamples,
xPCScGetDecimation, xPCScGetTriggerMode,
xPCScGetNumPrePostSamples, xPCScGetTriggerSignal,
xPCScGetTriggerScope, xPCScGetTriggerLevel,
xPCScGetTriggerSlope

2-16

xPCAddScope

Purpose Create new scope

Prototype void xPCAddScope(int port, int scType, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scType Enter the type of scope.

scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Description The xPCAddScope function creates a new scope on the target computer.
For scType, scopes can be of type host or target, depending on the
value of scType:

• SCTYPE_HOST for type host

• SCTYPE_TARGET for type target

• SCTYPE_FILE for type file

Constants for scType are defined in the header file xpcapiconst.h as
SCTYPE_HOST, SCTYPE_TARGET, and SCTYPE_FILE.

Calling the xPCAddScope function with scNum having the number of
an existing scope produces an error. Use xPCGetScopes to find the
numbers of existing scopes.

See Also API functions xPCScAddSignal, xPCScRemSignal, xPCRemScope,
xPCSetScope, xPCGetScope, xPCGetScopes

Target object method SimulinkRealTime.target.addscope

2-17

xPCAverageTET

Purpose Return average task execution time

Prototype double xPCAverageTET(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCAverageTET function returns the average task execution time
(TET) for the target application.

Description The xPCAverageTET function returns the TET for the target application.
You can use this function when the target application is running or
when it is stopped.

See Also API functions xPCMaximumTET, xPCMinimumTET

Property AvgTET of SimulinkRealTime.target

2-18

xPCCloseConnection

Purpose Close RS-232 or TCP/IP communication connection

Prototype void xPCCloseConnection(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCCloseConnection function closes the RS-232 or
TCP/IP communication channel opened by xPCOpenSerialPort,
xPCOpenTcpIpPort, or xPCOpenConnection. Unlike xPCClosePort,
it preserves the connection information such that a subsequent
call to xPCOpenConnection succeeds without the need to
resupply communication data such as the IP address or port
number. To completely close the communication channel, call
xPCDeRegisterTarget. Calling the xPCCloseConnection function
followed by calling xPCDeRegisterTarget is equivalent to calling
xPCClosePort.

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

See Also API functions xPCOpenConnection, xPCOpenSerialPort,
xPCOpenTcpIpPort, xPCReOpenPort, xPCRegisterTarget,
xPCDeRegisterTarget

2-19

xPCClosePort

Purpose Close RS-232 or TCP/IP communication connection

Prototype void xPCClosePort(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCClosePort function closes the RS-232 or TCP/IP communication
channel opened by either xPCOpenSerialPort or by xPCOpenTcpIpPort.
Calling this function is equivalent to calling xPCCloseConnection and
xPCDeRegisterTarget.

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

See Also API functions xPCOpenSerialPort, xPCOpenTcpIpPort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCRegisterTarget,
xPCDeRegisterTarget

Target object method SimulinkRealTime.target.close

2-20

xPCDeRegisterTarget

Purpose Delete target communication properties from Simulink Real-Time API
library

Prototype void xPCDeRegisterTarget(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCDeRegisterTarget function causes the Simulink Real-Time
API library to completely “forget” about the target communication
properties. You use this at the end of a session in which you use
xPCOpenConnection and xPCCloseConnection to connect and
disconnect from the target without entering the properties each time.
It works similarly to xPCClosePort, but does not close the connection
to the target computer. Before calling this function, you must first
call the function xPCCloseConnection to close the connection to the
target computer. The combination of calling the xPCCloseConnection
and xPCDeRegisterTarget functions has the same result as calling
xPCClosePort.

See Also API functions xPCRegisterTarget, xPCOpenTcpIpPort,
xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCTargetPing

2-21

xPCErrorMsg

Purpose Return text description for error message

Prototype char *xPCErrorMsg(int error_number, char *error_message);

Arguments error_number Enter the constant of an error.

error_message The xPCErrorMsg function copies the error message
string into the buffer pointed to by error_message.
error_message is then returned. You can later use
error_message in a function such as printf.

If error_message is NULL, the xPCErrorMsg
function returns a pointer to a statically allocated
string.

Return The xPCErrorMsg function returns a string associated with the error
error_number.

Description The xPCErrorMsg function returns error_message, which makes
it convenient to use in a printf or similar statement. Use the
xPCGetLastError function to get the constant for which you are getting
the message.

See Also API functions xPCSetLastError, xPCGetLastError

2-22

xPCFreeAPI

Purpose Unload Simulink Real-Time DLL

Prototype void xPCFreeAPI(void);

Description The xPCFreeAPI function unloads the Simulink Real-Time dynamic
link library. You must execute this function once at the end of the
application to unload the Simulink Real-Time API DLL. This frees the
memory allocated to the functions. This function is defined in the file
xpcinitfree.c. Link this file with your application.

See Also API functions xPCInitAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

2-23

xPCFSCD

Purpose Change current folder on target computer to specified path

Prototype void xPCFSCD(int port, char *dir);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

dir Enter the path on the target computer to change to.

Description The xPCFSCD function changes the current folder on the target computer
to the path specified in dir. Use the xPCFSGetPWD function to show the
current folder of the target computer.

See Also API function xPCFSGetPWD

File object method SimulinkRealTime.fileSystem.cd

2-24

xPCFSCloseFile

Purpose Close file on target computer

Prototype void xPCFSCloseFile(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

Description The xPCFSCloseFile function closes the file associated with fileHandle
on the target computer. fileHandle is the handle of a file previously
opened by the xPCFSOpenFile function.

See Also API functions xPCFSOpenFile, xPCFSReadFile, xPCFSWriteFile

File object method SimulinkRealTime.fileSystem.fclose

2-25

xPCFSDir

Purpose Get contents of specified folder on target computer

Prototype void xPCFSDir(int port, const char *path, char
*data, int numbytes);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the path on the target computer.

data The contents of the folder are stored in data, whose
allocated size is specified in numbytes.

numbytes Enter the size, in bytes, of the array data.

Description The xPCFSDir function copies the contents of the target computer
folder specified by path into data. The xPCFSDir function returns the
listing in the data array, which must be of size numbytes. Use the
xPCFSDirSize function to obtain the size of the folder listing for the
numbytes parameter.

See Also API function xPCFSDirSize

File object method SimulinkRealTime.fileSystem.dir

2-26

xPCFSDirItems

Purpose Get contents of specified folder on target computer

Prototype void xPCFSDirItems(int port, const char *path, dirStruct
*dirs, int numDirItems);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the path on the target computer.

dirs Enter the structure to contain the contents of the folder.

numDirItems Enter the number of items in the folder.

Description The xPCFSDirItems function copies the contents of the target computer
folder specified by path. The xPCFSDirItems function copies the listing
into the dirs structure, which must be of size numDirItems. Use the
xPCFSDirStructSize function to obtain the size of the folder for the
numDirItems parameter.

See Also API functions xPCFSDirStructSize, dirStruct

File object method SimulinkRealTime.fileSystem.dir

2-27

xPCFSDirSize

Purpose Return size of specified folder listing on target computer

Prototype int xPCFSDirSize(int port, const char *path);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the folder path on the target computer.

Return The xPCFSDirSize function returns the size, in bytes, of the specified
folder listing. If this function detects an error, it returns -1.

Description The xPCFSDirSize function returns the size, in bytes, of the buffer
required to list the folder contents on the target computer. Use this size
as the numbytes parameter in the xPCFSDir function.

See Also API function xPCFSDirItems

File object method SimulinkRealTime.fileSystem.dir

2-28

xPCFSDirStructSize

Purpose Get number of items in folder

Prototype int xPCFSDirStructSize(int port, const char *path);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the folder path on the target computer.

Return The xPCFSDirStructSize function returns the number of items in
the folder on the target computer. If this function detects an error, it
returns -1.

Description The xPCFSDirStructSize function returns the number of items in
the folder on the target computer. Use this size as the numDirItems
parameter in the xPCFSDirItems function.

See Also API function xPCFSDir

File object method SimulinkRealTime.fileSystem.dir

2-29

xPCFSDiskInfo

Purpose Information about target computer file system

Prototype diskinfo xPCFSDiskInfo(int port, const char *driveletter);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

driveletter Enter the drive letter of the file system
for which you want information.

Description The xPCFSDiskInfo function returns disk information for the file
system of the specified target computer drive, driveletter. This
function returns this information in the diskinfo structure.

See Also API structure SimulinkRealTime.fileSystem.diskinfo

2-30

xPCFSFileInfo

Purpose Return information for open file on target computer

Prototype fileinfo xPCFSFileInfo(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on
the target computer.

Description The xPCFSFileInfo function returns information about the specified
open file, filehandle, in a structure of type fileinfo.

See Also Structure SimulinkRealTime.fileSystem.fileinfo

2-31

xPCFSGetError

Purpose Get text description for error number on target computer file system

Prototype void xPCFSGetError(int port, unsigned int error_number,
char *error_message);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

error_number Enter the constant of an error.

error_message The string of the message associated with the
error error_number is stored in error_message.

Description The xPCFSGetError function gets the error_message associated with
error_number. This enables you to use the error message in a printf
or similar statement.

2-32

xPCFSGetFileSize

Purpose Return size of file on target computer

Prototype int xPCFSGetFileSize(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

Return Return the size of the specified file in bytes. If this function detects an
error, it returns -1.

Description The xPCFSGetFileSize function returns the size, in bytes, of the file
associated with fileHandle on the target computer. fileHandle is the
handle of a file previously opened by the xPCFSOpenFile function.

See Also API functions xPCFSOpenFile, xPCFSReadFile

File object methods SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

2-33

xPCFSGetPWD

Purpose Get current folder of target computer

Prototype void xPCFSGetPWD(int port, char *pwd);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

pwd The path of the current folder is stored in pwd.

Description The xPCFSGetPWD function places the path of the current folder on the
target computer in pwd, which must be allocated by the caller.

See Also File object method SimulinkRealTime.fileSystem.pwd

2-34

xPCFSMKDIR

Purpose Create new folder on target computer

Prototype void xPCFSMKDIR(int port, const char *dirname);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

dirname Enter the name of the folder to create on the target
computer.

Description The xPCFSMKDIR function creates the folder dirname in the current
folder of the target computer.

See Also API function xPCFSGetPWD

File object method SimulinkRealTime.fileSystem.mkdir

2-35

xPCFSOpenFile

Purpose Open file on target computer

Prototype int xPCFSOpenFile(int port, const char *filename,
const char *permission);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

filename Enter the name of the file to open on the target
computer.

permission Enter the read/write permission with which to
open the file. Values are r (read) or w (read/write).

Return The xPCFSOpenFile function returns the file handle for the opened file.
If function detects an error, it returns -1.

Description The xPCFSOpenFile function opens the specified file, filename, on
the target computer. If the file does not exist, the xPCFSOpenFile
function creates filename, then opens it. You can open a file for read
or read/write access.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSReadFile,
xPCFSWriteFile

File object methods SimulinkRealTime.fileSystem.fclose,
SimulinkRealTime.fileSystem.filetable,
SimulinkRealTime.fileSystem.fwrite
SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

2-36

xPCFSReadFile

Purpose Read open file on target computer

Prototype void xPCFSReadFile(int port, int fileHandle, int start,
int numbytes, unsigned char *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

start Enter an offset from the beginning of the file from
which this function can start to read.

numbytes Enter the number of bytes this function is to read
from the file.

data The contents of the file are stored in data.

Description The xPCFSReadFile function reads an open file on the target
computer and places the results of the read operation in the array
data. fileHandle is the file handle of a file previously opened by
xPCFSOpenFile. You can specify that the read operation begin at the
beginning of the file (default) or at a certain offset into the file (start).
The numbytes parameter specifies how many bytes the xPCFSReadFile
function is to read from the file.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSWriteFile

File object methods SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

2-37

xPCFSRemoveFile

Purpose Remove file from target computer

Prototype void xPCFSRemoveFile(int port, const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

filename Enter the name of a file on the target computer.

Description The xPCFSRemoveFile function removes the file named filename from
the target computer file system. filename can be a relative or absolute
path name on the target computer.

See Also File object method SimulinkRealTime.fileSystem.removefile

2-38

xPCFSRMDIR

Purpose Remove folder from target computer

Prototype void xPCFSRMDIR(int port, const char *dirname);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

dirname Enter the name of a folder on the target computer.

Description The xPCFSRMDIR function removes a folder named dirname from the
target computer file system. dirname can be a relative or absolute
path-name on the target computer.

See Also File object method SimulinkRealTime.fileSystem.rmdir

2-39

xPCFSScGetFilename

Purpose Get name of file for scope

Prototype const char *xPCFSScGetFilename(int port, int
scNum, char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

filename The name of the file for the specified scope is stored
in filename.

Return Returns the value of filename, the name of the file for the scope.

Description The xPCFSScGetFilename function returns the name of the file to which
scope scNum will save signal data. filename points to a caller-allocated
character array to which the filename is copied.

See Also API function xPCFSScSetFilename

Property Filename of SimulinkRealTime.fileSystem

2-40

xPCFSScGetWriteMode

Purpose Get write mode of file for scope

Prototype int xPCFSScGetWriteMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower, but
the file system maintains the actual file size.

Description The xPCFSScGetWriteMode function returns the write mode of the file
for the scope.

See Also API function xPCFSScSetWriteMode

Property WriteMode of SimulinkRealTime.fileSystem

2-41

xPCFSScGetWriteSize

Purpose Get block write size of data chunks

Prototype unsigned int xPCFSScGetWriteSize(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the block size, in bytes, of the data chunks.

Description The xPCFSScGetWriteSize function gets the block size, in bytes, of
the data chunks.

See Also API function xPCFSScSetWriteSize

Property WriteSize of SimulinkRealTime.fileSystem

2-42

xPCFSScSetFilename

Purpose Specify name for file to contain signal data

Prototype void xPCFSScSetFilename(int port, int scNum,
const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

filename Enter the name of a file to contain the signal data.

Description The xPCFSScSetFilename function sets the name of the file to which
the scope will save the signal data. The Simulink Real-Time software
creates this file in the target computer file system. Note that you can
only call this function when the scope is stopped.

See Also API function xPCFSScGetFilename

Property Filename of SimulinkRealTime.fileSystem

2-43

xPCFSScSetWriteMode

Purpose Specify when file allocation table entry is updated

Prototype void xPCFSScSetWriteMode(int port, int scNum, int writeMode);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

writeMode Enter an integer for the write mode:

0 Enables lazy write mode

1 Enables commit write mode

Description The xPCFSScSetWriteMode function specifies when a file allocation
table (FAT) entry is updated. Both modes write the signal data to the
file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower,
but the file system maintains the actual file size.

See Also API function xPCFSScGetWriteMode

Property WriteMode of SimulinkRealTime.fileSystem

2-44

xPCFSScSetWriteSize

Purpose Specify that memory buffer collect data in multiples of write size

Prototype void xPCFSScSetWriteSize(int port, int scNum, unsigned int
writeSize);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

writeSize Enter the block size, in bytes, of the data chunks.

Description The xPCFSScSetWriteSize function specifies that a memory buffer
collect data in multiples of writeSize. By default, this parameter is 512
bytes, which is the typical disk sector size. Using a block size that is the
same as the disk sector size provides better performance. writeSize
must be a multiple of 512.

See Also API function xPCFSScGetWriteSize

Property WriteSize of SimulinkRealTime.fileSystem

2-45

xPCFSWriteFile

Purpose Write to file on target computer

Prototype void xPCFSWriteFile(int port, int fileHandle, int numbytes,
const unsigned char *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

numbytes Enter the number of bytes this function is to write
into the file.

data The contents to write to fileHandle are stored in
data.

Description The xPCFSWriteFile function writes the contents of the array data
to the file specified by fileHandle on the target computer. The
fileHandle parameter is the handle of a file previously opened by
xPCFSOpenFile. numbytes is the number of bytes to write to the file.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSReadFile

2-46

xPCGetAPIVersion

Purpose Get version number of Simulink Real-Time API

Prototype const char *xPCGetAPIVersion(void);

Return The xPCGetApiVersion function returns a string with the version
number of the Simulink Real-Time kernel on the target computer.

Description The xPCGetApiVersion function returns a string with the version
number of the Simulink Real-Time kernel on the target computer. The
string is a constant string within the API DLL. Do not modify this
string.

See Also API function xPCGetTargetVersion

2-47

xPCGetAppName

Purpose Return target application name

Prototype char *xPCGetAppName(int port, char *model_name);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

model_name The xPCGetAppName function copies the target
application name string into the buffer pointed to by
model_name. model_name is then returned. You can
later use model_name in a function such as printf.

Note that the maximum size of the buffer is 256
bytes. To reserve enough space for the application
name string, allocate a buffer of size 256 bytes.

Return The xPCGetAppName function returns a string with the name of the
target application.

Description The xPCGetAppName function returns the name of the target application.
You can use the return value, model_name, in a printf or similar
statement. In case of error, the name string is unchanged.

Examples Allocate 256 bytes for the buffer appname.

char *appname=malloc(256);
xPCGetAppName(iport,appname);
appname=realloc(appname,strlen(appname)+1);
...
free(appname);

See Also API function xPCIsAppRunning

Target object property Application

2-48

xPCGetEcho

Purpose Return display mode for target message window

Prototype int xPCGetEcho(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetEcho function returns the number indicating the display
mode. Values are

1 Display is on. Messages are displayed in the message
display window on the target.

0 Display is off.

Return The xPCGetEcho function the display mode of the target computer
using communication channel port. If the function detects an error, it
returns -1.

Description The xPCGetEcho function returns the display mode of the target
computer using communication channel port. Messages include the
status of downloading the target application, changes to parameters,
and changes to scope signals.

See Also API function xPCSetEcho

2-49

xPCGetExecTime

Purpose Return target application execution time

Prototype double xPCGetExecTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetExecTime function returns the current execution time for a
target application. If the function detects an error, it returns -1.

Description The xPCGetExecTime function returns the current execution time for
the running target application. If the target application is stopped, the
value is the last running time when the target application was stopped.
If the target application is running, the value is the current running
time.

See Also API functions xPCSetStopTime, xPCGetStopTime

Property ExecTime of SimulinkRealTime.target

2-50

xPCGetLastError

Purpose Return constant of last error

Prototype int xPCGetLastError(void);

Return The xPCGetLastError function returns the error constant for the last
reported error. If the function did not detect an error, it returns 0.

Description The xPCGetLastError function returns the constant of the last reported
error by another API function. This value is reset every time you
call a new function. Therefore, you should check this constant value
immediately after a call to an API function. For a list of error constants
and messages, see “C API Error Messages” on page 2-2.

See Also API functions xPCErrorMsg, xPCSetLastError

2-51

xPCGetLoadTimeOut

Purpose Return timeout value for communication between host computer and
target computer

Prototype int xPCGetLoadTimeOut(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetLoadTimeOut function returns the number of seconds
allowed for the communication between the host computer and target
application. If the function detects an error, it returns -1.

Description The xPCGetLoadTimeOut function returns the number of seconds
allowed for the communication between the host computer and the
target application. When an Simulink Real-Time API function initiates
communication between the host computer and target computer,
it waits for a certain amount of time before checking to see if the
communication is complete. In the case where communication with the
target computer is not complete, the function returns a timeout error.

For example, when you load a new target application onto the target
computer, the function xPCLoadApp waits for a certain amount of time
before checking to see if the initialization of the target application is
complete. In the case where initialization of the target application is
not complete, the function xPCLoadApp returns a timeout error. By
default, xPCLoadApp checks for the readiness of the target computer
for up to 5 seconds. However, for larger models or models requiring
longer initialization (for example, those with thermocouple boards), the
default might not be long enough and a spurious timeout is generated.
Other functions that communicate with the target computer will wait
for timeOut seconds before declaring a timeout event. The function
xPCSetLoadTimeOut sets the timeout to a different number.

Use the xPCGetLoadTimeOut function if you suspect that the current
number of seconds (the timeout value) is too short. Then use the
xPCSetLoadTimeOut function to set the timeout to a higher number.

2-52

xPCGetLoadTimeOut

See Also API functions xPCLoadApp, xPCSetLoadTimeOut

xPCUnloadApp

“Increase the Time for Downloads”

2-53

xPCGetLogMode

Purpose Return logging mode and increment value for target application

Prototype lgmode xPCGetLogMode(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetLogMode function returns the logging mode in the lgmode
structure. If the logging mode is 1 (LGMOD_VALUE), this function also
returns an increment value in the lgmode structure. If an error occurs,
this function returns -1.

Description The xPCGetLogMode function gets the logging mode and increment
value for the current target application. The increment (difference
in amplitude) value is measured between logged data points. A data
point is logged only when an output signal or a state changes by the
increment value.

See Also API function xPCSetLogMode

API structure lgmode

2-54

xPCGetNumOutputs

Purpose Return number of outputs

Prototype int xPCGetNumOutputs(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumOutputs function returns the number of outputs in the
current target application. If the function detects an error, it returns -1.

Description The xPCGetNumOutputs function returns the number of outputs in the
target application. The number of outputs equals the sum of the input
signal widths of the output blocks at the root level of the Simulink
model.

See Also API functions xPCGetOutputLog, xPCGetNumStates, xPCGetStateLog

2-55

xPCGetNumParams

Purpose Return number of tunable parameters

Prototype int xPCGetNumParams(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumParams function returns the number of tunable
parameters in the target application. If the function detects an error, it
returns -1.

Description The xPCGetNumParams function returns the number of tunable
parameters in the target application. Use this function to see how many
parameters you can get or modify.

See Also API functions xPCGetParamIdx, xPCSetParam, xPCGetParam,
xPCGetParamName, xPCGetParamDims

Property NumParameters of SimulinkRealTime.target

2-56

xPCGetNumScopes

Purpose Return number of scopes added to target application

Prototype int xPCGetNumScopes(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumScopes function returns the number of scopes that have
been added to the target application. If the function detects an error, it
returns -1.

Description The xPCGetNumScopes function returns the number of scopes that have
been added to the target application.

2-57

xPCGetNumScSignals

Purpose Returns number of signals added to specific scope

Prototype int xPCGetNumScSignals(int port, int scopeId);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scopeId Enter the ID number of the scope for which you want to
get the number of added signals.

Return The xPCGetNumScSignals function returns the number of signals that
have been added to the scope, scopeID. If the function detects an error,
it returns -1.

Description The xPCGetNumScSignals function returns the number of signals that
have been added to the scope, scopeID.

2-58

xPCGetNumSignals

Purpose Return number of signals

Prototype int xPCGetNumSignals(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumSignals function returns the number of signals in the
target application. If the function detects an error, it returns -1.

Description The xPCGetNumSignals function returns the total number of signals in
the target application that can be monitored from the host. Use this
function to see how many signals you can monitor.

See Also API functions xPCGetSignalIdx, xPCGetSignal, xPCGetSignals,
xPCGetSignalName, xPCGetSignalWidth

Property NumSignals of SimulinkRealTime.target

2-59

xPCGetNumStates

Purpose Return number of states

Prototype int xPCGetNumStates(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumStates function returns the number of states in the
target application. If the function detects an error, it returns -1.

Description The xPCGetNumStates function returns the number of states in the
target application.

See Also API functions xPCGetStateLog, xPCGetNumOutputs, xPCGetOutputLog

Property StateLog of SimulinkRealTime.target

2-60

xPCGetOutputLog

Purpose Copy output log data to array

Prototype void xPCGetOutputLog(int port, int first_sample,
int num_samples,
int decimation, int output_id, double *output_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the output
log.

decimation Select whether to copy every sample value or every
Nth value.

output_id Enter an output identification number.

output_data The log is stored in output_data, whose allocation
is the responsibility of the caller.

Description The xPCGetOutputLog function gets the output log and copies that
log to an array. You get the data for each output signal in turn by
specifying output_id. Output IDs range from 0 to (N-1), where N is the
return value of xPCGetNumOutputs. Entering 1 for decimation copies
all values. Entering N copies every Nth value.

For first_sample, the sample indices range from 0 to (N-1), where N is
the return value of xPCNumLogSamples. Get the maximum number of
samples by calling the function xPCNumLogSamples.

Note that the target application must be stopped before you get the
number.

2-61

xPCGetOutputLog

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTETLog, xPCGetTimeLog

Target object method SimulinkRealTime.target.getlog

Property OutputLog of SimulinkRealTime.target

2-62

xPCGetParam

Purpose Get parameter value and copy it to array

Prototype void xPCGetParam(int port, int paramIndex,
double *paramValue);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIndex Enter the index for a parameter.

paramValue The function returns a parameter value as an array
of doubles.

Description The xPCGetParam function returns the parameter as an array in
paramValue. paramValue must be large enough to hold the parameter.
You can query the size by calling the function xPCGetParamDims. Get
the parameter index by calling the function xPCGetParamIdx. The
parameter matrix is returned as a vector, with the conversion being
done in column-major format. It is also returned as a double, regardless
of the data type of the actual parameter.

For paramIndex, values range from 0 to (N-1), where N is the return
value of xPCGetNumParams.

See Also API functions xPCSetParam, xPCGetParamDims, xPCGetParamIdx,
xPCGetNumParams

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of
SimulinkRealTime.target

2-63

xPCGetParamDims

Purpose Get row and column dimensions of parameter

Prototype void xPCGetParamDims(int port, int paramIndex,
int *dimension);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIndex Parameter index.

dimension Dimensions (row, column) of a parameter.

Description The xPCGetParamDims function gets the dimensions (row, column) of
a parameter with paramIndex and stores them in dimension, which
must have at least two elements.

For paramIndex, values range from 0 to (N-1), where N is the return
value of xPCGetNumParams.

See Also API functions xPCGetParamIdx, xPCGetParamName, xPCSetParam,
xPCGetParam, xPCGetNumParams

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of
SimulinkRealTime.target

2-64

xPCGetParamIdx

Purpose Return parameter index

Prototype int xPCGetParamIdx(int port, const char *blockName,
const char *paramName);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

blockName Enter the full block path generated by Simulink
Coder.

paramName Enter the parameter name for a parameter associated
with the block.

Return The xPCGetParamIdx function returns the parameter index for the
parameter name. If the function detects an error, it returns -1.

Description The xPCGetParamIdx function returns the parameter index for the
parameter name (paramName) associated with a Simulink block
(blockName). Both blockName and paramName must be identical to those
generated at target application building time. The block names should
be referenced from the file model_namept.m in the generated code,
where model_name is the name of the model. Note that a block can have
one or more parameters.

See Also API functions xPCGetParamDims, xPCGetParamName, xPCGetParam

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of
SimulinkRealTime.target

2-65

xPCGetParamName

Purpose Get name of parameter

Prototype void xPCGetParamName(int port, int paramIdx,
char *blockName, char
*paramName);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIdx Enter a parameter index.

blockName String with the full block path generated by
Simulink Coder.

paramName Name of a parameter for a specific block.

Description The xPCGetParamName function gets the parameter name and block
name for a parameter with the index paramIdx. The block path
and name are returned and stored in blockName, and the parameter
name is returned and stored in paramName. You must allocate enough
space for both blockName and paramName. If the paramIdx is invalid,
xPCGetLastError returns nonzero, and the strings are unchanged. Get
the parameter index from the function xPCGetParamIdx.

See Also API functions xPCGetParam, xPCGetParamDims, xPCGetParamIdx

Properties ShowParameters and Parameters of
SimulinkRealTime.target

2-66

xPCGetSampleTime

Purpose Return target application sample time

Prototype double xPCGetSampleTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetSampleTime function returns the sample time, in seconds, of
the target application. If the function detects an error, it returns -1.

Description The xPCGetSampleTime function returns the sample time, in seconds,
of the target application. You can get the error by using the function
xPCGetLastError.

See Also API function xPCSetSampleTime

Property SampleTime of SimulinkRealTime.target

2-67

xPCGetScope

Purpose Get and copy scope data to structure

Prototype scopedata xPCGetScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCGetScope function returns a structure of type scopedata.

Description
Note The xPCGetScope function will be removed in a future release.
Use the xPCScGetScopePropertyName functions to access property
values instead. For example, to get the number of samples being
acquired in one data acquisition cycle, use xPCScGetNumSamples.

The xPCGetScope function gets properties of a scope with scNum and
copies the properties into a structure with type scopedata. You can
use this function in conjunction with xPCSetScope to change several
properties of a scope at one time. See scopedata for a list of properties.
Use the xPCGetScope function to get the scope number.

See Also API functions xPCSetScope, scopedata

Target object method SimulinkRealTime.target.getscope

2-68

xPCGetScopeList

Purpose Get and copy list of scope numbers

Prototype void xPCGetScopeList(int port, int *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data List of scope numbers in an integer array (allocated by
the caller) as a list of unsorted integers.

Description The xPCGetScopeList function gets the list of scopes currently defined.
data must be large enough to hold the list of scopes. You can query the
size by calling the function xPCGetNumScopes.

Note Use the xPCGetScopeList function instead of the xPCGetScopes
function. The xPCGetScopes will be removed in a future release.

2-69

xPCGetScopes

Purpose Get and copy list of scope numbers

Prototype void xPCGetScopes(int port, int *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data List of scope numbers in an integer array (allocated by
the caller) as a list of unsorted integers and terminated
by -1.

Description The xPCGetScopes function gets the list of scopes currently defined.
You can use the constant MAX_SCOPES (defined in xpcapiconst.h) as
the size of data. This is currently set to 30 scopes.

Note This function will be removed in a future release. Use the
xPCGetScopeList function instead.

See Also API functions xPCSetScope, xPCGetScope, xPCScGetSignals

Property Scopes of SimulinkRealTime.target

2-70

xPCGetSessionTime

Purpose Return length of time Simulink Real-Time kernel has been running

Prototype double xPCGetSessionTime(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Return The xPCGetSessionTime function returns the amount of time in seconds
that the Simulink Real-Time kernel has been running on the target
computer. If the function detects an error, it returns -1.

Description The xPCGetSessionTime function returns, as a double, the amount of
time in seconds that the Simulink Real-Time kernel has been running.
This value is also the time that has elapsed since you last booted the
target computer.

2-71

xPCGetSignal

Purpose Return value of signal

Prototype double xPCGetSignal(int port, int sigNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

sigNum Enter a signal number.

Return The xPCGetSignal function returns the current value of signal sigNum.
If the function detects an error, it returns -1.

Description The xPCGetSignal function returns the current value of a signal.
For vector signals, use xPCGetSignals rather than call this function
multiple times. Use the xPCGetSignalIdx function to get the signal
number.

See Also API function xPCGetSignals

Property Signals of SimulinkRealTime.target

2-72

xPCGetSignalIdx

Purpose Return index for signal

Prototype int xPCGetSignalIdx(int port, const char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigName Enter a signal name.

Return The xPCGetSignalIdx function returns the index for the signal with
name sigName. If the function detects an error, it returns -1.

Description The xPCGetSignalIdx function returns the index of a signal. The name
must be identical to the name generated when the application was
built. You should reference the name from the file model_namebio.m in
the generated code, where model_name is the name of the model. The
creator of the application should already know the signal name.

See Also API functions xPCGetSignalName, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Target object method SimulinkRealTime.target.getsignalid

2-73

xPCGetSigIdxfromLabel

Purpose Return array of signal indices

Prototype int xPCGetSigIdxfromLabel(int port, const char
*sigLabel, int *sigIds);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigLabel String with the name of a signal label.

sigIds Return array of signal indices.

Return If xPCGetSigIdxfromLabel finds a signal, it fills an array sigIds with
signal indices and returns 0. If it finds no signal, it returns -1.

Description The xPCGetSigIdxfromLabel function returns in sigIds the array of
signal indices for signal sigName. This function assumes that you have
labeled the signal for which you request the indices (see the Signal
name parameter of the “Signal Properties Controls”). Note that the
Simulink Real-Time software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal
name/label. Signal labels must be unique.

sigIds must be large enough to contain the array of indices. You can
use the xPCGetSigLabelWidth function to get the required amount of
memory to be allocated by the sigIds array.

See Also API functions xPCGetSignalLabel, xPCGetSigLabelWidth

2-74

xPCGetSignalLabel

Purpose Copy label of signal to character array

Prototype char * xPCGetSignalLabel(int port, int sigIdx,
char *sigLabel);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter signal index.

sigLabel Return signal label associated with signal index, sigIdx.

Return The xPCGetSignalLabel function returns the label of the signal.

Description The xPCGetSignalLabel function copies and returns the signal label,
including the block path, of a signal with sigIdx. The result is stored
in sigLabel. If sigIdx is invalid, xPCGetLastError returns a nonzero
value, and sigLabel is unchanged. The function returns sigLabel,
which makes it convenient to use in a printf or similar statement.
This function assumes that you already know the signal index. Signal
labels must be unique.

This function assumes that you have labeled the signal for which you
request the index (see the Signal name parameter of the “Signal
Properties Controls”). Note that the Simulink Real-Time software
refers to Simulink signal names as signal labels. The creator of the
application should already know the signal name/label.

See Also API functions xPCGetSigIdxfromLabel, xPCGetSigLabelWidth

2-75

xPCGetSigLabelWidth

Purpose Return number of elements in signal

Prototype int xPCGetSigLabelWidth(int port, const char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigName String with the name of a signal.

Return The xPCGetSigLabelWidth function returns the number of elements
that the signal sigName contains. If the function detects an error, it
returns -1.

Description The xPCGetSigLabelWidth function returns the number of elements
that the signal sigName contains. This function assumes that you have
labeled the signal for which you request the elements (see the Signal
name parameter of the “Signal Properties Controls”). Note that the
Simulink Real-Time software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal
name/label. Signal labels must be unique.

See Also API functions xPCGetSigIdxfromLabel, xPCGetSignalLabel

2-76

xPCGetSignalName

Purpose Copy name of signal to character array

Prototype char *xPCGetSignalName(int port, int sigIdx,
char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter a signal index.

sigName String with the name of a signal.

Return The xPCGetSignalName function returns the name of the signal.

Description The xPCGetSignalName function copies and returns the signal name,
including the block path, of a signal with sigIdx. The result is stored
in sigName. If sigIdx is invalid, xPCGetLastError returns a nonzero
value, and sigName is unchanged. The function returns sigName, which
makes it convenient to use in a printf or similar statement. This
function assumes that you already know the signal index.

See Also API functions xPCGetSignalIdx, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Properties ShowSignals and Signals of SimulinkRealTime.target

2-77

xPCGetSignals

Purpose Return vector of signal values

Prototype int xPCGetSignals(int port, int numSignals,
const int *signals,
double *values);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

numSignals Enter the number of signals to be acquired (that is, the
number of values in signals).

signals Enter the list of signal numbers to be acquired.

values Returned values are stored in the double array values.

Return The xPCGetSignals function returns 0 if it completes execution without
detecting an error. If the function detects an error, it returns -1.

Description The xPCGetSignals function is the vector version of the function
xPCGetSignal. This function returns the values of a vector of signals
(up to 1000) as fast as it can acquire them. The signal values may not
be at the same time step (for that, define a scope of type SCTYPE_HOST
and use xPCScGetData). xPCGetSignal does the same thing for a single
signal, and could be used multiple times to achieve the same result.
However, the xPCGetSignals function is faster, and the signal values
are more likely to be spaced closely together. The signals are converted
to doubles regardless of the actual data type of the signal.

For signals, the list you provide should be stored in an integer array.
Get the signal numbers with the function xPCGetSignalIdx.

See Also API function xPCGetSignal, xPCGetSignalIdx

Example To reference signal vector data rather than scalar values, pass a vector
of indices for the signal data. For example:

2-78

xPCGetSignals

/**/

/* Assume a signal of width 10, with the blockpath

* mySubsys/mySignal and the signal index s1.

*/

int i;

int sigId[10];

double sigVal[10]; /* Signal values are stored here */

/* Get the ID of the first signal */

sigId[0] = xPCGetSignalIdx(port, "mySubsys/mySignal/s1");

if (sigId[0] == -1) {

/* Handle error */

}

for (i = 1; i < 10; i++) {

sigId[i] = sigId[0] + i;

}

xPCGetSignals(port, 10, sigId, sigVal);

/* If no error, sigVal should have the signal values */

/***/

To repeatedly get the signals, repeat the call to xPCGetSignals. If you
do not change sigID, you only need to call xPCGetSignalIdx once.

2-79

xPCGetSignalWidth

Purpose Return width of signal

Prototype int xPCGetSignalWidth(int port, int sigIdx);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter the index of a signal.

Return The xPCGetSignalWidth function returns the signal width for a signal
with sigIdx. If the function detects an error, it returns -1.

Description The xPCGetSignalWidth function returns the number of signals for a
specified signal index. Although signals are manipulated as scalars, the
width of the signal might be useful to reassemble the components into a
vector again. A signal’s width is the number of signals in the vector.

See Also API functions xPCGetSignalIdx, xPCGetSignalName, xPCGetSignal,
xPCGetSignals

2-80

xPCGetStateLog

Purpose Copy state log values to array

Prototype void xPCGetStateLog(int port, int first_sample,
int num_samples,
int decimation, int state_id, double *state_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the output
log.

decimation Select whether to copy all the sample values or every
Nth value.

state_id Enter a state identification number.

state_data The log is stored in state_data, whose allocation is
the responsibility of the caller.

Description The xPCGetStateLog function gets the state log. It then copies the
log into state_data. You get the data for each state signal in turn by
specifying the state_id. State IDs range from 1 to (N-1), where N is the
return value of xPCGetNumStates. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For first_sample, the
sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

Note that the target application must be stopped before you get the
number.

2-81

xPCGetStateLog

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumStates, xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

SimulinkRealTime.target.getlog

Property StateLog of SimulinkRealTime.target

2-82

xPCGetStopTime

Purpose Return stop time

Prototype double xPCGetStopTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetStopTime function returns the stop time as a double, in
seconds, of the target application. If the function detects an error, it
returns -10.0. If the stop time is infinity (run forever), this function
returns -1.0.

Description The xPCGetStopTime function returns the stop time, in seconds, of the
target application. This is the amount of time the target application
runs before stopping. If the function detects an error, it returns -10.0.
You will then need to use the function xPCGetLastError to find the
error number.

See Also API function xPCSetStopTime

Property StopTime of SimulinkRealTime.target

2-83

xPCGetTargetVersion

Purpose Get Simulink Real-Time kernel version

Prototype void xPCGetTargetVersion(int port, char *ver);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

ver The version is stored in ver.

Description The xPCGetTargetVersion function gets a string with the version
number of the Simulink Real-Time kernel on the target computer. It
then copies that version number into ver.

See Also xPCGetAPIVersion

2-84

xPCGetTETLog

Purpose Copy TET log to array

Prototype void xPCGetTETLog(int port, int first_sample,
int num_samples, int decimation,
double *TET_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the TET
log.

decimation Select whether to copy all the sample values or
every Nth value.

TET_data The log is stored in TET_data, whose allocation is
the responsibility of the caller.

Description The xPCGetTETLog function gets the task execution time (TET) log. It
then copies the log into TET_data. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For first_sample, the
sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTimeLog

SimulinkRealTime.target.getlog

Property TETLog of SimulinkRealTime.target

2-85

xPCGetTimeLog

Purpose Copy time log to array

Prototype void xPCGetTimeLog(int port, int first_sample,
int num_samples,
int decimation, double *time_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the
time log.

decimation Select whether to copy all the sample values or
every Nth value.

time_data The log is stored in time_data, whose allocation
is the responsibility of the caller.

Description The xPCGetTimeLog function gets the time log and copies the log into
time_data. This is especially relevant in the case of value-equidistant
logging, where the logged values might not be uniformly spaced in
time. Entering 1 for decimation copies all values. Entering N copies
every Nth value. For first_sample, the sample indices range from 0
to (N-1), where N is the return value of xPCNumLogSamples. Use the
xPCNumLogSamples function to get the number of samples.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetStateLog, xPCGetTETLog, xPCSetLogMode, xPCGetLogMode

SimulinkRealTime.target.getlog

Property TimeLog of SimulinkRealTime.target

2-86

xPCInitAPI

Purpose Initialize Simulink Real-Time DLL

Prototype int xPCInitAPI(void);

Return The xPCInitAPI function returns 0 if it completes execution without
detecting an error. If the function detects an error, it returns -1.

Description The xPCInitAPI function initializes the Simulink Real-Time dynamic
link library. You must execute this function once at the beginning of the
application to load the Simulink Real-Time API DLL. This function is
defined in the file xpcinitfree.c. Link this file with your application.

See Also API functions xPCFreeAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

2-87

xPCIsAppRunning

Purpose Return target application running status

Prototype int xPCIsAppRunning(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return If the target application is stopped, the xPCIsAppRunning function
returns 0. If the target application is running, this function returns 1.
If the function detects an error, it returns -1.

Description The xPCIsAppRunning function returns 1 or 0 depending on whether
the target application is stopped or running. If the function detects
is an error, use the function xPCGetLastError to check for the error
string constant.

See Also API function xPCIsOverloaded

Property Status of SimulinkRealTime.target

2-88

xPCIsOverloaded

Purpose Return target computer overload status

Prototype int xPCIsOverloaded(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return If the target application has overloaded the CPU, the xPCIsOverloaded
function returns 1. If it has not overloaded the CPU, the function
returns 0. If this function detects error, it returns -1.

Description The xPCIsOverloaded function checks if the target application has
overloaded the target computer and returns 1 if it has and 0 if it has
not. If the target application is not running, the function returns 0.

See Also API function xPCIsAppRunning

Property CPUoverload of SimulinkRealTime.target

2-89

xPCIsScFinished

Purpose Return data acquisition status for scope

Prototype int xPCIsScFinished(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return If a scope finishes a data acquisition cycle, the xPCIsScFinished
function returns 1. If the scope is in the process of acquiring data, this
function returns 0. If the function detects an error, it returns -1.

Description The xPCIsScFinished function returns a Boolean value depending on
whether scope scNum is finished (state of SCST_FINISHED) or not. You
can also call this function for target scopes; however, because target
scopes restart immediately, it is almost impossible to find these scopes
in the finished state. Use the xPCGetScope function to get the scope
number.

See Also API function xPCScGetState

Scope object property Status

2-90

xPCLoadApp

Purpose Load target application onto target computer

Prototype void xPCLoadApp(int port, const char *pathstr,
const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

pathstr Enter the full path to the target application file,
excluding the file name. For example, in C, use a
string like "C:\\work".

filename Enter the name of a compiled target application
(*.dlm) without the file extension. For example, in C
use a string like "xpcosc".

Description The xPCLoadApp function loads the compiled target application to the
target computer. pathstr must not contain the trailing backslash.
pathstr can be set to NULL or to the string 'nopath' if the application
is in the current folder. The variable filename must not contain the
target application extension.

Before returning, xPCLoadApp waits for a certain amount of time before
checking whether the model initialization is complete. In the case
where the model initialization is incomplete, xPCLoadApp returns a
timeout error to indicate a connection problem (for example, ETCPREAD).
By default, xPCLoadApp checks for target readiness five times, with
each attempt taking approximately 1 second (less if the target is ready).
However, for larger models or models requiring longer initialization (for
example, those with thermocouple boards), the default might not be
long enough and a spurious timeout can be generated. The functions
xPCGetLoadTimeOut and xPCSetLoadTimeOut control the number of
attempts made.

2-91

xPCLoadApp

See Also API functions xPCStartApp, xPCStopApp, xPCUnloadApp,
xPCSetLoadTimeOut, xPCGetLoadTimeOut

Target object method SimulinkRealTime.target.load

2-92

xPCLoadParamSet

Purpose Restore parameter values

Prototype void xPCLoadParamSet(int port, const char *filename);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of the file that contains the saved
parameters.

Description The xPCLoadParamSet function restores the target application
parameter values saved in the file filename. This file must be located
on a local drive of the target computer. The parameter file must have
been saved from a previous call to xPCSaveParamSet.

See Also API function xPCSaveParamSet

2-93

xPCMaxLogSamples

Purpose Return maximum number of samples that can be in log buffer

Prototype int xPCMaxLogSamples(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCMaxLogSamples function returns the total number of samples.
If the function detects an error, it returns -1.

Description The xPCMaxLogSamples function returns the total number of samples
that can be returned in the logging buffers.

See Also API functions xPCNumLogSamples, xPCNumLogWraps, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Property MaxLogSamples of SimulinkRealTime.target

2-94

xPCMaximumTET

Purpose Copy maximum task execution time to array

Prototype void xPCMaximumTET(int port, double *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description The xPCMaximumTET function gets the maximum task execution time
(TET) that was achieved during the previous target application run.
This function also returns the time at which the maximum TET was
achieved. The xPCMaximumTET function then copies these values into the
data array. The maximum TET value is copied into the first element,
and the time at which it was achieved is copied into the second element.

See Also API functions xPCMinimumTET, xPCAverageTET

Property MaxTET of SimulinkRealTime.target

2-95

xPCMinimumTET

Purpose Copy minimum task execution time to array

Prototype void xPCMinimumTET(int port, double *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description The xPCMinimumTET function gets the minimum task execution time
(TET) that was achieved during the previous target application run.
This function also returns the time at which the minimum TET was
achieved. The xPCMinimumTET function then copies these values into the
data array. The minimum TET value is copied into the first element,
and the time at which it was achieved is copied into the second element.

See Also API functions xPCMaximumTET, xPCAverageTET

Property MinTET of SimulinkRealTime.target

2-96

xPCNumLogSamples

Purpose Return number of samples in log buffer

Prototype int xPCNumLogSamples(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCNumLogSamples function returns the number of samples in the
log buffer. If the function detects an error, it returns -1.

Description The xPCNumLogSamples function returns the number of samples in
the log buffer. In contrast to xPCMaxLogSamples, which returns the
maximum number of samples that can be logged (because of buffer
size constraints), xPCNumLogSamples returns the number of samples
actually logged.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCGetStateLog, xPCGetOutputLog, xPCGetTETLog,
xPCGetTimeLog, xPCMaxLogSamples

2-97

xPCNumLogWraps

Purpose Return number of times log buffer wraps

Prototype int xPCNumLogWraps(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCNumLogWraps function returns the number of times the log
buffer wraps. If the function detects an error, it returns -1.

Description The xPCNumLogWraps function returns the number of times the log
buffer wraps.

See Also API functions xPCNumLogSamples, xPCMaxLogSamples, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Property NumLogWraps of SimulinkRealTime.target

2-98

xPCOpenConnection

Purpose Open connection to target computer

Prototype void xPCOpenConnection(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCOpenConnection function opens a connection to the target
computer whose data is indexed by port. Before calling this function,
set up the target information by calling xPCRegisterTarget. A call to
either xPCOpenSerialPort or xPCOpenTcpIpPort can also set up the
target information. If the port is already open, calling this function
has no effect.

See Also API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing, xPCCloseConnection, xPCRegisterTarget

2-99

xPCOpenSerialPort

Purpose Open RS-232 connection to Simulink Real-Time system

Prototype int xPCOpenSerialPort(int comPort, int baudRate);

Arguments comPort Index of the COM port to be used (0 is COM1, 1 is
COM2, and so forth).

baudRate baudRate must be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCOpenSerialPort function returns the port value for the
connection. If the function detects an error, it returns -1.

Description The xPCOpenSerialPort function initiates an RS-232 connection
to an Simulink Real-Time system. It returns the port value for the
connection. Be sure to pass this value to all the Simulink Real-Time
API functions that require a port value.

If you enter a value of 0 for baudRate, this function sets the baud rate to
the default value (115200).

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

See Also API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing, xPCOpenConnection, xPCCloseConnection,
xPCRegisterTarget, xPCDeRegisterTarget

2-100

xPCOpenTcpIpPort

Purpose Open TCP/IP connection to Simulink Real-Time system

Prototype int xPCOpenTcpIpPort(const char *ipAddress, const char
*ipPort);

Arguments ipAddress Enter the IP address of the target as a dotted decimal
string. For example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example,
"22222".

Return The xPCOpenTcpIpPort function returns a nonnegative integer that you
can then use as the port value for an Simulink Real-Time API function
that requires it. If this operation fails, this function returns -1.

Description The xPCOpenTcpIpPort function opens a connection to the TCP/IP
location specified by the IP address. It returns a nonnegative integer
if it succeeds. Use this integer as the ipPort variable in the Simulink
Real-Time API functions that require a port value. The global error
number is also set, which you can get using xPCGetLastError.

See Also API functions xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing

2-101

xPCReboot

Purpose Reboot target computer

Prototype void xPCReboot(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCReboot function reboots the target computer. This function
returns nothing. This function does not close the connection to the
target computer. You should either explicitly close the port or call
xPCReOpenPort once the target computer has rebooted.

See Also API function xPCReOpenPort

Target object method SimulinkRealTime.target.reboot

2-102

xPCReOpenPort

Purpose Reopen communication channel

Prototype int xPCReOpenPort(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCReOpenPort function returns 0 if it reopens a connection without
detecting an error. If the function detects an error, it returns -1.

Description The xPCReOpenPort function reopens the communications channel
pointed to by port. The difference between this function and
xPCOpenSerialPort or xPCOpenTcpIpPort is that xPCReOpenPort uses
the already existing settings, while the other functions need to set up
the port.

See Also API functions xPCOpenTcpIpPort, xPCClosePort

2-103

xPCRegisterTarget

Purpose Register target with Simulink Real-Time API library

Prototype int xPCRegisterTarget(int commType, const char *ipAddress,
const char *ipPort, int comPort, int baudRate);

Arguments commType Specify the communication type (TCP/IP or RS-232)
between the host and the target.

Note RS-232 Host-Target communication mode will be
removed in a future release. Use TCP/IP instead.

ipAddress Enter the IP address of the target as a dotted decimal
string. For example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example,
"22222".

comPort comPort and baudRate are as in xPCOpenSerialPort.

baudRate The baudRate must be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCRegisterTarget function returns the port number. If the
function detects an error, it returns -1.

Description The xPCRegisterTarget function works similarly to
xPCOpenSerialPort and xPCOpenTcpIpPort, except that it does not
try to open a connection to the target computer. In other words,
xPCOpenSerialPort or xPCOpenTcpIpPort is equivalent to calling
xPCRegisterTarget with the required parameters, followed by a call to
xPCOpenConnection.

Use the constants COMMTYP_TCPIP and COMMTYP_RS232 for commType.
If commType is set to COMMTYP_RS232, the function ignores ipAddress

2-104

xPCRegisterTarget

and ipPort. Analogously, the function ignores comPort and baudRate if
commType is set to COMMTYP_TCPIP.

If you enter a value of 0 for baudRate, this function sets the baud rate to
the default value (115200).

See Also API functions xPCDeRegisterTarget, xPCOpenTcpIpPort,
xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCTargetPing

2-105

xPCRemScope

Purpose Remove scope

Prototype void xPCRemScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCRemScope function removes the scope with number scNum.
Attempting to remove a nonexistent scope causes an error. For a list
of existing scopes, see xPCGetScopes. Use the xPCGetScope function
to get the scope number.

See Also API functions xPCAddScope, xPCScRemSignal, xPCGetScopes

Target object method SimulinkRealTime.target.remscope

2-106

xPCSaveParamSet

Purpose Save parameter values of target application

Prototype void xPCSaveParamSet(int port, const char *filename);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of the file to contain the saved parameters.

Description The xPCSaveParamSet function saves the target application parameter
values in the file filename. This function saves the file on a local drive
of the current target computer. You can later reload these parameters
with the xPCLoadParamSet function.

You might want to save target application parameter values if you
change these parameter values while the application is running in
Real-Time mode. Saving these values enable you to easily recreate
target application parameter values from a number of application runs.

See Also API function xPCLoadParamSet

2-107

xPCScAddSignal

Purpose Add signal to scope

Prototype void xPCScAddSignal(int port, int scNum, int sigNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

sigNum Enter a signal number.

Description The xPCScAddSignal function adds the signal with number sigNum to
the scope scNum. The signal should not already exist in the scope. You
can use xPCScGetSignals to get a list of the signals already present.
Use the function xPCGetScope to get the scope number. Use the
xPCGetSignalIdx function to get the signal number.

See Also API functions xPCScRemSignal, xPCAddScope, xPCRemScope,
xPCGetScopes

Scope object methods SimulinkRealTime.fileScope.addsignal,
SimulinkRealTime.hostScope.addsignal, and
SimulinkRealTime.targetScope.addsignal

2-108

xPCScGetAutoRestart

Purpose Scope autorestart status

Prototype long xPCScGetAutoRestart(int port, int scNum)

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetAutoRestart function returns the autorestart flag value
of scope scNum. If the function detects an error, it returns -1.

Description The xPCScGetAutoRestart function gets the autorestart flag value for
scope scNum. Autorestart flag can be disabled (0) or enabled (1).

See Also API functions xPCScSetAutoRestart

2-109

xPCScGetData

Purpose Copy scope data to array

Prototype void xPCScGetData(int port, int scNum, int
signal_id, int start,
int numsamples, int decimation, double *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

signal_id Enter a signal number. Enter -1 to get time
stamped data.

start Enter the first sample from which data retrieval
is to start.

numsamples Enter the number of samples retrieved with a
decimation of decimation, starting from the start
value.

decimation Enter a value such that every decimation sample
is retrieved in a scope window.

data The data is available in the array data, starting
from sample start.

Description The xPCScGetData function gets the data used in a scope. Use this
function for scopes of type SCTYPE_HOST. The scope must be either
in state "Finished" or in state "Interrupted" for the data to be
retrievable. (Use the xPCScGetState function to check the state of the
scope.) The data must be retrieved one signal at a time. The calling
function must allocate the space ahead of time to store the scope data.
data must be an array of doubles, regardless of the data type of the
signal to be retrieved. Use the function xPCScGetSignals to get the list
of signals in the scope for signal_id. Use the function xPCGetScope to
get the scope number for scNum.

2-110

xPCScGetData

To get time stamped data, specify -1 for signal_id. From the output,
you can then get the number of nonzero elements.

See Also API functions xPCGetScope, xPCScGetState, xPCScGetSignals

Property Data of SimulinkRealTime.hostScope

2-111

xPCScGetDecimation

Purpose Return decimation of scope

Prototype int xPCScGetDecimation(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetDecimation function returns the decimation of scope
scNum. If the function detects an error, it returns -1.

Description The xPCScGetDecimation function gets the decimation of scope scNum.
The decimation is a number, N, meaning every Nth sample is acquired in
a scope window. Use the xPCGetScope function to get the scope number.

See Also API function xPCScSetDecimation

Property Decimation of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-112

xPCScGetNumPrePostSamples

Purpose Get number of pre- or post-triggering samples before triggering scope

Prototype int xPCScGetNumPrePostSamples(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumPrePostSamples function returns the number of
samples for pre- or posttriggering for scope scNum. If an error occurs,
this function returns the minimum integer value (-2147483647-1).

Description The xPCScGetNumPrePostSamples function gets the number of samples
for pre- or posttriggering for scope scNum. A negative number implies
pretriggering, whereas a positive number implies posttriggering
samples. Use the xPCGetScope function to get the scope number.

See Also API function xPCScSetNumPrePostSamples

Property NumPrePostSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-113

xPCScGetNumSamples

Purpose Get number of samples in one data acquisition cycle

Prototype int xPCScGetNumSamples(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumSamples function returns the number of samples in
the scope scNum. If the function detects an error, it returns -1.

Description The xPCScGetNumSamples function gets the number of samples in one
data acquisition cycle for scope scNum. Use the xPCGetScope function
to get the scope number.

See Also API function xPCScSetNumSamples

Property NumSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-114

xPCScGetNumSignals

Purpose Get number of signals in scope

Prototype int xPCScGetNumSignals(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumSignals function returns the number of signals in the
scope scNum. If the function detects an error, it returns -1.

Description The xPCScGetNumSignals function gets the number of signals in the
scope scNum. Use the xPCGetScope function to get the scope number.

See Also API function xPCGetScope

2-115

xPCScGetSignalList

Purpose Copy list of signals to array

Prototype void xPCScGetSignalList(int port, int scNum, int *data)

Arguments port Value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

data Integer array allocated by the caller as a list containing
the signal identifiers.

Description The xPCScGetSignals function gets the list of signals defined for scope
scNum. The array data must be large enough to hold the list of signals.
To query the size, use the xPCScGetNumSignals function. Use the
xPCGetScope function to get the scope number.

Note Use the xPCScGetSignalList function instead of the
xPCScGetSignals function. The xPCScGetSignals will be removed
in a future release.

2-116

xPCScGetSignals

Purpose Copy list of signals to array

Prototype void xPCScGetSignals(int port, int scNum, int *data);

Arguments port Value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

data Integer array allocated by the caller as a list containing
the signal identifiers, terminated by -1.

Description The xPCScGetSignals function gets the list of signals defined for
scope scNum. You can use the constant MAX_SIGNALS, defined in
xpcapiconst.h, as the size of data. Use the xPCGetScope function
to get the scope number.

Note This function will be removed in a future release. Use the
xPCScGetSignalList function instead.

See Also API functions xPCScGetData, xPCGetScopes

Scope object property Signals

2-117

xPCScGetStartTime

Purpose Get start time for last data acquisition cycle

Prototype double xPCScGetStartTime(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetStartTime function returns the start time for the last
data acquisition cycle of a scope. If the function detects an error, it
returns -1.

Description The xPCScGetStartTime function gets the time at which the last data
acquisition cycle for scope scNum started. This is only valid for scopes
of type SCTYPE_HOST. Use the xPCGetScope function to get the scope
number.

See Also API functions xPCScGetNumSamples, xPCScGetDecimation

2-118

xPCScGetState

Purpose Get state of scope

Prototype int xPCScGetState(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetState function returns the state of scope scNum. If the
function detects an error, it returns -1.

Description The xPCScGetState function gets the state of scope scNum, or -1 upon
error. Use the xPCGetScope function to get the scope number.

Constants to find the scope state, defined in xpcapiconst.h, have the
following meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to start.

SCST_PREACQUIRING 5 Scope acquires a predefined number
of samples before triggering.

SCST_WAITFORTRIG 1 After a scope is finished with the
preacquiring state, it waits for
a trigger. If the scope does not
preacquire data, it enters the wait
for trigger state.

SCST_ACQUIRING 2 Scope is acquiring data. The scope
enters this state when it leaves the
wait for trigger state.

2-119

xPCScGetState

Constant Value Description

SCST_FINISHED 3 Scope is finished acquiring data
when it has attained the predefined
limit.

SCST_INTERRUPTED 4 The user has stopped (interrupted)
the scope.

See Also API functions xPCScStart, xPCScStop

Scope object property Status

2-120

xPCScGetTriggerLevel

Purpose Get trigger level for scope

Prototype double xPCScGetTriggerLevel(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerLevel function returns the scope trigger level.
If the function detects an error, it returns -1.

Description The xPCScGetTriggerLevel function gets the trigger level for scope
scNum. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScSetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerLevel of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-121

xPCScGetTriggerMode

Purpose Get trigger mode for scope

Prototype int xPCScGetTriggerMode(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerMode function returns the scope trigger mode. If
the function detects an error, it returns -1.

Description The xPCScGetTriggerMode function gets the trigger mode for scope
scNum. Use the xPCGetScope function to get the scope number. Use
the constants defined in xpcapiconst.h to interpret the trigger mode.
These constants include the following:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The
scope triggers when it is ready
to trigger, regardless of the
circumstances.

TRIGMD_SOFTWARE 1 Only user intervention can
trigger the scope. No other
triggering is possible.

2-122

xPCScGetTriggerMode

Constant Value Description

TRIGMD_SIGNAL 2 The scope is triggered only
after a signal has crossed a
value.

TRIGMD_SCOPE 3 The scope is triggered by
another scope at the trigger
point of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-123

xPCScGetTriggerScope

Purpose Get trigger scope

Prototype int xPCScGetTriggerScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerScope function returns a trigger scope. If the
function detects an error, it returns -1.

Description The xPCScGetTriggerScope function gets the trigger scope for scope
scNum. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerScope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-124

xPCScGetTriggerScopeSample

Purpose Get sample number for triggering scope

Prototype int xPCScGetTriggerScopeSample(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerScopeSample function returns a nonnegative
integer for a real sample, and -1 for the special case where triggering
is at the end of the data acquisition cycle for a triggering scope. If the
function detects an error, it returns INT_MIN (-2147483647-1).

Description The xPCScGetTriggerScopeSample function gets the number of
samples a triggering scope (scNum) acquires before starting data
acquisition on a second scope. This value is a nonnegative integer for a
real sample, and -1 for the special case where triggering is at the end of
the data acquisition cycle for a triggering scope. Use the xPCGetScope
function to get the scope number for the trigger scope.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode,
xPCScSetTriggerScopeSample

Property TriggerSample of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-125

xPCScGetTriggerSignal

Purpose Get trigger signal for scope

Prototype int xPCScGetTriggerSignal(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerSignal function returns the scope trigger signal.
If the function detects an error, it returns -1.

Description The xPCScGetTriggerSignal function gets the trigger signal for scope
scNum. Use the xPCGetScope function to get the scope number for the
trigger scope.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerSignal of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-126

xPCScGetTriggerSlope

Purpose Get trigger slope for scope

Prototype int xPCScGetTriggerSlope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerSlope function returns the scope trigger slope.
If the function detects an error, it returns -1.

Description The xPCScGetTriggerSlope function gets the trigger slope of scope
scNum. Use the xPCGetScope function to get the scope number for the
trigger scope. Use the constants defined in xpcapiconst.h to interpret
the trigger slope. These constants have the following meanings:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger slope must be
rising when the signal crosses
the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be
falling when the signal crosses
the trigger value.

2-127

xPCScGetTriggerSlope

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerSlope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-128

xPCScGetType

Purpose Get type of scope

Prototype int xPCScGetType(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetType function returns the scope type. If the function
detects an error, it returns -1.

Description The xPCScGetType function gets the type (SCTYPE_HOST for host,
SCTYPE_TARGET for target, or SCTYPE_FILE for file) of scope scNum. Use
the constants defined in xpcapiconst.h to interpret the return value.
A scope of type SCTYPE_HOST is displayed on the host computer while
a scope of type SCTYPE_TARGET is displayed on the target computer
screen. A scope of type SCTYPE_FILE is stored on a storage medium. Use
the xPCGetScope function to get the scope number.

See Also API functions xPCAddScope, xPCRemScope

Property Type of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-129

xPCScRemSignal

Purpose Remove signal from scope

Prototype void xPCScRemSignal(int port, int scNum, int sigNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

sigNum Enter a signal number.

Description The xPCScRemSignal function removes a signal from the scope with
number scNum. The scope must already exist, and signal number sigNum
must exist in the scope. Use xPCGetScopes to determine the existing
scopes, and use xPCScGetSignals to determine the existing signals
for a scope. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also API functions xPCScAddSignal, xPCAddScope, xPCRemScope,
xPCGetScopes, xPCScGetSignals, xPCScGetState

Scope object methods SimulinkRealTime.fileScope.remsignal,
SimulinkRealTime.hostScope.remsignal, and
SimulinkRealTime.targetScope.remsignal

2-130

xPCScSetAutoRestart

Purpose Scope autorestart status

Prototype void xPCScSetAutoRestart(int port, int scNum,
int autorestart)

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

autorestart Enter value to enable (1) or disable (0) scope
autorestart.

Description The xPCScSetAutoRestart function sets the autorestart flag for scope
scNum to 0 or 1. 0 disables the flag, 1 enables it. Use this function only
when the scope is stopped.

See Also API functions xPCScGetAutoRestart

2-131

xPCScSetDecimation

Purpose Set decimation of scope

Prototype void xPCScSetDecimation(int port, int scNum,
int decimation);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

decimation Enter an integer for the decimation.

Description The xPCScSetDecimation function sets the decimation of scope scNum.
The decimation is a number, N, meaning every Nth sample is acquired in
a scope window. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also API functions xPCScGetDecimation, xPCScGetState

Property Decimation of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-132

xPCScSetNumPrePostSamples

Purpose Set number of pre- or posttriggering samples before triggering scope

Prototype void xPCScSetNumPrePostSamples(int port, int
scNum, int prepost);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

prepost A negative number means pretriggering, while
a positive number means posttriggering. This
function can only be used when the scope is stopped.

Description The xPCScSetNumPrePostSamples function sets the number of samples
for pre- or posttriggering for scope scNum to prepost. Use this function
only when the scope is stopped. Use xPCScGetState to check the state
of the scope. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScGetNumPrePostSamples, xPCScGetState

Property NumPrePostSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-133

xPCScSetNumSamples

Purpose Set number of samples in one data acquisition cycle

Prototype void xPCScSetNumSamples(int port, int scNum, int samples);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

samples Enter the number of samples you want to acquire in
one cycle.

Description The xPCScSetNumSamples function sets the number of samples for
scope scNum to samples. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScope function to get the scope number.

See Also API functions xPCScGetNumSamples, xPCScGetState

Property NumSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-134

xPCScSetTriggerLevel

Purpose Set trigger level for scope

Prototype void xPCScSetTriggerLevel(int port, int scNum,
double level);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

level Value for a signal to trigger data acquisition with a
scope.

Description The xPCScSetTriggerLevel function sets the trigger level to level for
scope scNum. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number for the trigger scope.

See Also API functions xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetState

Property TriggerLevel of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-135

xPCScSetTriggerMode

Purpose Set trigger mode of scope

Prototype void xPCScSetTriggerMode(int port, int scNum, int mode);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

mode Trigger mode for a scope.

Description The xPCScSetTriggerMode function sets the trigger mode of scope
scNum to mode. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes
function to get a list of scopes.

Use the constants defined in xpcapiconst.h to interpret the trigger
mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope
triggers when it is ready to trigger,
regardless of the circumstances. This is
the default.

TRIGMD_SOFTWARE 1 Only user intervention can trigger the
scope. No other triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only after a signal
has crossed a value.

TRIGMD_SCOPE 3 The scope is triggered by another
scope at the trigger point of the
triggering scope, modified by the value of
triggerscopesample (see scopedata).

2-136

xPCScSetTriggerMode

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScGetTriggerMode, xPCScGetState

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-137

xPCScSetTriggerScope

Purpose Select scope to trigger another scope

Prototype void xPCScSetTriggerScope(int port, int scNum,
int trigScope);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

trigScope Enter the scope number of the scope used for a trigger.

Description The xPCScSetTriggerScope function sets the trigger scope of scope
scNum to trigScope. This function can only be used when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

The scope type can be SCTYPE_HOST, SCTYPE_TARGET, or SCTYPE_FILE.

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScGetState

Property TriggerScope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-138

xPCScSetTriggerScopeSample

Purpose Set sample number for triggering scope

Prototype void xPCScSetTriggerScopeSample(int port, int scNum, int
trigScSamp);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

trigScSampEnter a nonnegative integer for the number of samples
acquired by the triggering scope before starting data
acquisition on a second scope.

Description The xPCScSetTriggerScopeSample function sets the number of samples
(trigScSamp) a triggering scope acquires before it triggers a second
scope (scNum). Use the xPCGetScopes function to get a list of scopes.

For meaningful results, set trigScSamp between -1 and (nSamp-1).
nSamp is the number of samples in one data acquisition cycle for the
triggering scope. If you specify too large a value, the scope is never
triggered.

If you want to trigger a second scope at the end of a data acquisition
cycle for the triggering scope, enter a value of -1 for trigScSamp.

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetTriggerScopeSample

Property TriggerSample of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-139

xPCScSetTriggerSignal

Purpose Select signal to trigger scope

Prototype void xPCScSetTriggerSignal(int port, int
scNum, int trigSig);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

trigSig Enter a signal number.

Description The xPCScSetTriggerSignal function sets the trigger signal of scope
scNum to trigSig. The trigger signal trigSig must be one of the
signals in the scope. Use this function only when the scope is stopped.
You can use xPCScGetSignals to get the list of signals in the scope. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes
function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScGetState, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerSignal of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-140

xPCScSetTriggerSlope

Purpose Set slope of signal that triggers scope

Prototype void xPCScSetTriggerSlope(int port, int scNum,
int trigSlope);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

trigSlope Enter the slope mode for the signal that triggers the
scope.

Description The xPCScSetTriggerSlope function sets the trigger slope of scope
scNum to trigSlope. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

Use the constants defined in xpcapiconst.h to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger signal value must be
rising when it crosses the trigger
value.

TRIGSLOPE_FALLING 2 The trigger signal value must be
falling when it crosses the trigger
value.

2-141

xPCScSetTriggerSlope

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScGetState

Property TriggerSlope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-142

xPCScSoftwareTrigger

Purpose Set software trigger of scope

Prototype void xPCScSoftwareTrigger(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScSoftwareTrigger function triggers scope scNum. The
scope must be in the state Waiting for trigger for this function to
succeed. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

Regardless of the trigger mode setting, you can use
xPCScSoftwareTrigger to force a trigger. In trigger mode
Software, this function is the only way to trigger the scope.

See Also API functions xPCGetScopes, xPCScGetState, xPCIsScFinished

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-143

xPCScStart

Purpose Start data acquisition for scope

Prototype void xPCScStart(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScStart function starts or restarts the data acquisition of scope
scNum. If the scope does not have to preacquire samples, it enters the
Waiting for Trigger state. The scope must be in state Waiting to
Start, Finished, or Interrupted for this function to succeed. Call
xPCScGetState to check the state of the scope or, for host scopes that
are already started, call xPCIsScFinished. Use the xPCGetScopes
function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScGetState, xPCScStop,
xPCIsScFinished

Scope object method SimulinkRealTime.fileScope.start,
SimulinkRealTime.hostScope.start,
SimulinkRealTime.targetScope.start

2-144

xPCScStop

Purpose Stop data acquisition for scope

Prototype void xPCScStop(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScStop function stops the scope scNum. This sets the scope to
the "Interrupted" state. The scope must be running for this function
to succeed. Use xPCScGetState to determine the state of the scope. Use
the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScStart, xPCScGetState

Scope object methods SimulinkRealTime.fileScope.stop,
SimulinkRealTime.hostScope.stop,
SimulinkRealTime.targetScope.stop

2-145

xPCSetEcho

Purpose Turn message display on or off

Prototype void xPCSetEcho(int port, int mode);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

mode Valid values are

0 Turns the display off

1 Turns the display on

Description On the target computer screen, the xPCSetEcho function sets the
message display on the target computer on or off. You can change the
mode only when the target application is stopped. When you turn the
message display off, the message screen no longer updates. Existing
messages remain on the screen as they were.

See Also API function xPCGetEcho

2-146

xPCSetLastError

Purpose Set last error to specific string constant

Prototype void xPCSetLastError(int error);

Arguments error Specify the string constant for the error.

Description The xPCSetLastError function sets the global error constant returned
by xPCGetLastError to error. This is useful only to set the string
constant to ENOERR, indicating no error was found.

See Also API functions xPCGetLastError, xPCErrorMsg

2-147

xPCSetLoadTimeOut

Purpose Change initialization timeout value between host computer and target
computer

Prototype void xPCSetLoadTimeOut(int port, int timeOut);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

timeOut Enter the new communication timeout value.

Description The xPCSetLoadTimeOut function changes the timeout value for
communication between the host computer and target computer. The
timeOut value is the time an Simulink Real-Time API function waits
for the communication between the host computer and target computer
to complete before returning. It enables you to set the number of
communication attempts to be made before signaling a timeout.

For example, the function xPCLoadApp waits to check whether the
model initialization for a new application is complete before returning.
When a new target application is loaded onto the target computer,
the function xPCLoadApp waits for a certain time to check whether
the model initialization is complete before returning. If the model
initialization is incomplete within the allotted time, xPCLoadApp returns
a timeout error.

By default, xPCLoadApp checks for target readiness for up to 5 seconds.
However, for larger models or models requiring longer initialization (for
example, models with thermocouple boards), the default might not be
long enough and a spurious timeout can be generated. Other functions
that communicate with the target computer will wait for timeOut
seconds before declaring a timeout event.

See Also API functions xPCGetLoadTimeOut, xPCLoadApp, xPCUnloadApp

2-148

xPCSetLogMode

Purpose Set logging mode and increment value of scope

Prototype void xPCSetLogMode(int port, lgmode logging_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

logging_data Logging mode and increment value.

Description The xPCSetLogMode function sets the logging mode and increment to the
values set in logging_data. See the structure lgmode for more details.

See Also API function xPCGetLogMode

API structure lgmode

Property LogMode of SimulinkRealTime.target

2-149

xPCSetParam

Purpose Change value of parameter

Prototype void xPCSetParam(int port, int paramIdx, const
double *paramValue);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIdx Parameter index.

paramValue Vector of doubles, assumed to be the size required
by the parameter type

Description The xPCSetParam function sets the parameter paramIdx to the
value in paramValue. For matrices, paramValue should be a vector
representation of the matrix in column-major format. Although
paramValue is a vector of doubles, the function converts the values to
the expected data types (using truncation) before setting them.

See Also API functions xPCGetParamDims, xPCGetParamIdx, xPCGetParam

2-150

xPCSetSampleTime

Purpose Change target application sample time

Prototype void xPCSetSampleTime(int port, double ts);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

ts Sample time for the target application.

Description The xPCSetSampleTime function sets the sample time, in seconds, of the
target application to ts. Use this function only when the application
is stopped.

See Also API function xPCGetSampleTime

Property SampleTime of SimulinkRealTime.target

2-151

xPCSetScope

Purpose Set properties of scope

Prototype void xPCSetScope(int port, scopedata state);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

state Enter a structure of type scopedata.

Description
Note The xPCSetScope function will be removed in a future release.
Use the xPCScSetScopePropertyName functions to access property
values instead. For example, to set the number of samples to acquire in
one data acquisition cycle, use xPCScSetNumSamples.

The xPCSetScope function sets the properties of a scope using a state
structure of type scopedata. Set the properties you want to set for the
scope. You can set several properties at the same time. For convenience,
call the function xPCGetScope first to populate the structure with
the current values. You can then change the desired values. Use
this function only when the scope is stopped. Use xPCScGetState to
determine the state of the scope.

See Also API functions xPCGetScope, xPCScGetState, scopedata

Scope object methods SimulinkRealTime.fileScope.set,
SimulinkRealTime.hostScope.set, and
SimulinkRealTime.targetScope.set

2-152

xPCSetStopTime

Purpose Change target application stop time

Prototype void xPCSetStopTime(int port, double tfinal);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

tfinal Enter the stop time, in seconds.

Description The xPCSetStopTime function sets the stop time of the target
application to the value in tfinal. The target application will run for
this number of seconds before stopping. Set tfinal to -1.0 to set the
stop time to infinity.

See Also API function xPCGetStopTime

Property StopTime of SimulinkRealTime.target

2-153

xPCStartApp

Purpose Start target application

Prototype void xPCStartApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCStartApp function starts the target application loaded on the
target computer.

See Also API function xPCStopApp

Target object method SimulinkRealTime.target.start

2-154

xPCStopApp

Purpose Stop target application

Prototype void xPCStopApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCStopApp function stops the target application loaded on the
target computer. The target application remains loaded and the
parameter changes you made remain intact. If you want to stop and
unload an application, use xPCUnloadApp.

See Also API functions xPCStartApp, xPCUnloadApp

Target object method SimulinkRealTime.target.stop

2-155

xPCTargetPing

Purpose Ping target computer

Prototype int xPCTargetPing(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Return The xPCTargetPing function does not return an error status. This
function returns 1 if the target responds. If the target computer does
not respond, the function returns 0.

Description The xPCTargetPing function pings the target computer and returns 1
or 0 depending on whether the target responds or not. This function
returns an error string constant only when there is an error in the input
parameter (for example, the port number is invalid or port is not open).
Other errors, such as the inability to connect to the target, are ignored.

If you are using TCP/IP, note that xPCTargetPing will cause the
target computer to close the TCP/IP connection. You can use
xPCOpenConnection to reconnect. You can also use this xPCTargetPing
feature to close the target computer connection in the event of an
aborted TCP/IP connection (for example, if your host side program
crashes).

See Also API functions xPCOpenConnection, xPCOpenSerialPort,
xPCOpenTcpIpPort, xPCClosePort

2-156

xPCTgScGetGrid

Purpose Get status of grid line for particular scope

Prototype int xPCTgScGetGrid(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the status of the grid for a scope of type SCTYPE_TARGET. If the
function detects an error, it returns -1.

Description The xPCTgScGetGrid function gets the state of the grid lines for scope
scNum (which must be of type SCTYPE_TARGET). A return value of 1
implies grid on, while 0 implies grid off. Note that when the scope mode
is set to SCMODE_NUMERICAL, the grid is not drawn even when the grid
mode is set to 1.

Tip

• Use xPCTgScSetMode and xPCTgScGetMode to set and retrieve the
scope mode.

• Use xPCGetScopes to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

2-157

xPCTgScGetMode

Purpose Get scope mode for displaying signals

Prototype int xPCTgScGetMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCTgScGetMode function returns the value corresponding to the
scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If this function detects an error, it returns -1.

Description The xPCTgScGetMode function gets the mode (SCMODE_NUMERICAL,
SCMODE_REDRAW, SCMODE_SLIDING, SCMODE_ROLLING) of the scope scNum,
which must be of type SCTYPE_TARGET. Use the xPCGetScopes function
to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property DisplayMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

2-158

xPCTgScGetViewMode

Purpose Get view mode for target computer display

Prototype int xPCTgScGetViewMode(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCTgScGetViewMode function returns the view mode for the target
computer screen. If the function detects an error, it returns -1.

Description The xPCTgScGetViewMode function gets the view (zoom) mode for the
target computer display. If the returned value is not zero, the number
is that of the scope currently displayed on the screen. If the value is 0,
then all defined scopes are displayed on the target computer screen, but
no scopes are in focus (all scopes are unzoomed).

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property ViewMode of SimulinkRealTime.target

2-159

xPCTgScGetYLimits

Purpose Copy y-axis limits for scope to array

Prototype void xPCTgScGetYLimits(int port, int scNum,
double *limits);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

limits The first element of the array is the lower limit while the
second element is the upper limit.

Description The xPCTgScGetYLimits function gets and copies the upper and lower
limits for a scope of type SCTYPE_TARGET and with scope number scNum.
The limits are stored in the array limits. If both elements are zero,
the limits are autoscaled. Use the xPCGetScopes function to get a list of
scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScGetMode, xPCTgScSetYLimits

Property Ylimit of SimulinkRealTime.targetScope

2-160

xPCTgScSetGrid

Purpose Set grid mode for scope

Prototype void xPCTgScSetGrid(int port, int scNum, int grid);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

grid Enter a grid value.

Description The xPCTgScSetGrid function sets the grid of a scope of type
SCTYPE_TARGET and scope number scNum to grid. If grid is 0, the
grid is off. If grid is 1, the grid is on and grid lines are drawn on
the scope window. When the drawing mode of scope scNum is set to
SCMODE_NUMERICAL, the grid is not drawn even when the grid mode is
set to 1. Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScGetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Scope object property Grid

2-161

xPCTgScSetMode

Purpose Set display mode for scope

Prototype void xPCTgScSetMode(int port, int scNum, int mode);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

mode Enter the value for the mode.

Description The xPCTgScSetMode function sets the mode of a scope of type
SCTYPE_TARGET and scope number scNum to mode. You can use one of
the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property DisplayMode of SimulinkRealTime.targetScope

2-162

xPCTgScSetViewMode

Purpose Set view mode for scope

Prototype void xPCTgScSetViewMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCTgScSetViewMode function sets the target computer screen
to display one scope with scope number scNum. If you set scNum to 0,
the target computer screen displays all the defined scopes. Use the
xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property ViewMode of SimulinkRealTime.target

2-163

xPCTgScSetYLimits

Purpose Set y-axis limits for scope

Prototype void xPCTgScSetYLimits(int port, int scNum, const
double *Ylimits);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Ylimits Enter a two-element array.

Description The xPCTgScSetYLimits function sets the y-axis limits for a scope
with scope number scNum and type SCTYPE_TARGET to the values in
the double array Ylimits. The first element is the lower limit, and
the second element is the upper limit. Set both limits to 0.0 to specify
autoscaling. Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScGetMode, xPCTgScGetYLimits

Property Ylimit of SimulinkRealTime.targetScope

2-164

xPCUnloadApp

Purpose Unload target application

Prototype void xPCUnloadApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCUnloadApp function stops the current target application,
removes it from the target computer memory, and resets the target
computer in preparation for receiving a new target application. The
function xPCLoadApp calls this function before loading a new target
application.

See Also API function xPCLoadApp

Target object methods SimulinkRealTime.target.load,
SimulinkRealTime.target.unload

2-165

xPCUnloadApp

2-166

3

Simulink Real-Time API
Reference for COM

3 Simulink® Real-Time™ API Reference for COM

COM API Methods — Alphabetical List

3-2

FSDir

Purpose Type definition for file system folder information structure

Syntax typedef struct {
BSTR Name;
BSTR Date;
BSTR Time;
long Bytes;
long isdir;
} FSDir;

Fields Name This value contains the name of the file or
folder.

Date This value contains the date the file or folder
was last modified.

Time This value contains the time the file or folder
was last modified.

Bytes This value contains the size of the file in
bytes. If the element is a folder, this value
is 0.

isdir This value indicates if the element is a file
(0) or folder (1). If it is a folder, Bytes has a
value of 0.

Description The FSDir structure contains information for a folder in the file system.

See Also API methodxPCFileSystem.DirList

3-3

FSDiskInfo

Purpose Type definition for file system disk information structure

Syntax typedef struct {
BSTR Label;
BSTR DriveLetter;
BSTR Reserved;
long SerialNumber;
long FirstPhysicalSector;
long FATType;
long FATCount;
long MaxDirEntries;
long BytesPerSector;
long SectorsPerCluster;
long TotalClusters;
long BadClusters;
long FreeClusters;
long Files;
long FileChains;
long FreeChains;
long LargestFreeChain;

} FSDiskInfo;

Fields Label This value contains the zero-terminated
string that contains the volume label. The
string is empty if the volume has no label.

DriveLetter This value contains the drive letter, in
uppercase.

Reserved Reserved.

SerialNumber This value contains the volume serial
number.

FirstPhysicalSector This value contains the logical block address
(LBA) of the logical drive boot record. For
3.5-inch disks, this value is 0.

3-4

FSDiskInfo

FATType This value contains the type of file system
found. It can contain 12 , 16 , or 32 for
FAT-12, FAT-16, or FAT-32 volumes,
respectively.

FATCount This value contains the number of FAT
partitions on the volume.

MaxDirEntries This value contains the size of the root folder.
For FAT-32 systems, this value is 0.

BytesPerSector This value contains the sector size. This
value is most likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the
smallest unit of storage that can be allocated
to a file.

TotalClusters This value contains the number of file storage
clusters on the volume.

BadClusters This value contains the number of clusters
that have been marked as bad. These clusters
are unavailable for file storage.

FreeClusters This value contains the number of clusters
that are currently available for storage.

Files This value contains the number of files,
including folders, on the volume. This
number excludes the root folder and files that
have an allocated file size of 0.

FileChains This value contains the number of contiguous
cluster chains. On a completely unfragmented
volume, this value is identical to the value
of Files.

3-5

FSDiskInfo

FreeChains This value contains the number of contiguous
cluster chains of free clusters. On a
completely unfragmented volume, this value
is 1.

LargestFreeChain This value contains the maximum allocated
file size, in number of clusters, for a newly
allocated contiguous file. On a completely
unfragmented volume, this value is identical
to FreeClusters.

Description The FSDiskInfo structure contains information for file system disks.

See Also API method xPCFileSystem.GetDiskInfo

3-6

xPCFileSystem.CD

Purpose Change current folder on target computer to specified path

Prototype long CD(BSTR dir);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dir Enter the path on the target computer to change to.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.CD method changes the current folder on the target
computer to the path specified in dir. Use the xPCFileSystem.PWD
method to show the current folder of the target computer.

See Also API method xPCFileSystem.PWD

3-7

xPCFileSystem.CloseFile

Purpose Close file on target computer

Prototype CloseFile(long filehandle);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filehandle Enter the file handle of an open file on the
target computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.CloseFile method closes the file associated with
fileHandle on the target computer. fileHandle is the handle of a file
previously opened by the xPCFileSystem.OpenFile method.

See Also API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile,
xPCFileSystem.WriteFile

3-8

xPCFileSystem.DirList

Purpose Return contents of target computer folder

Prototype DirList(BSTR path);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] path Enter the path of the folder.

Description The xPCFileSystem.DirList method returns the contents of the target
computer folder specified by path as an array of the FSDir structure.

See Also API structure FSDir

API method xPCFileSystem.GetDiskInfo

3-9

xPCFileSystem.GetDiskInfo

Purpose Return disk information

Prototype GetDiskInfo(BSTR driveLetter);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] driveLetter Enter the driver letter that contains the file
system.

Description The xPCFileSystem.GetDiskInfo method accepts as input the drive
specified by driveLetter and fills in the fields of the FSDiskInfo
structure.

See Also API structure FSDiskInfo

API method xPCFileSystem.DirList

3-10

xPCFileSystem.GetFileSize

Purpose Return size of file on target computer

Prototype long GetFileSize(long filehandle);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filehandle Enter the file handle of an open file on the
target computer.

Return This method returns the size of the specified file in bytes.

Description The xPCFileSystem.GetFileSize method returns the size, in bytes,
of the file associated with filehandle on the target computer.
filehandle is the handle of a file previously opened by the
xPCFileSystem.OpenFile method.

See Also API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile

3-11

xPCFileSystem.Init

Purpose Initialize file system object to communicate with target computer

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] xPCProtocol Specify the communication port of the target
computer object for which the file system is
to be initialized.

Return If the method detects an error, it returns -1. Otherwise, the
xPCFileSystem.Init method returns 0.

Description The xPCFileSystem.Init method initializes the file system object to
communicate with the target computer referenced by the xPCProtocol
object.

3-12

xPCFileSystem.MKDIR

Purpose Create folder on target computer

Prototype long MKDIR(BSTR dirname);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dirname Enter the name of the folder to create on the
target computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.MKDIR method creates the folder dirname in the
current folder of the target computer.

See Also API method xPCFileSystem.PWD

3-13

xPCFileSystem.OpenFile

Purpose Open file on target computer

Prototype long OpenFile(BSTR filename, BSTR permission);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filename Enter the name of the file to open on the
target computer.

[in] permission Enter the read/write permission with which
to open the file. Values are r (read) or w
(read/write).

Return The xPCFileSystem.OpenFile method returns the file handle for the
opened file.

Description The xPCFileSystem.OpenFile method opens the specified file,
filename, on the target computer. If the file does not exist, the
xPCFileSystem.OpenFile method creates filename, then opens it. You
can open a file for read or read/write access.

Note Opening the file for write access overwrites the existing contents
of the file. It does not append the new data.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.ReadFile,
xPCFileSystem.WriteFile

3-14

xPCFileSystem.PWD

Purpose Get current folder of target computer

Prototype BSTR PWD();

Member
Of

XPCAPICOMLib.xPCFileSystem

Return This method returns the path of the current folder on the target
computer.

Description The xPCFileSystem.PWD method places the path of the current folder
on the target computer.

See Also API method xPCFileSystem.CD

3-15

xPCFileSystem.ReadFile

Purpose Read open file on target computer

Prototype VARIANT ReadFile(int fileHandle, int start, int numbytes);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] fileHandle Enter the file handle of an open file on the
target computer.

[in] start Enter an offset from the beginning of the file
from which this method can start to read.

[in] numbytes Enter the number of bytes this method is to
read from the file.

Return This method returns the results of the read operation as a VARIANT of
type Byte. If the method detects an error, it returns VT_ERROR, whose
value is 10, instead.

Description The xPCFileSystem.ReadFile method reads an open file on the target
computer and returns the results of the read operation as a VARIANT
of type Byte. fileHandle is the file handle of a file previously opened
by xPCFileSystem.OpenFile. You can specify that the read operation
begin at the beginning of the file (default) or at a certain offset into the
file (start). The numbytes parameter specifies how many bytes the
xPCFileSystem.ReadFile method is to read from the file.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.OpenFile,
xPCFileSystem.WriteFile

3-16

xPCFileSystem.RemoveFile

Purpose Remove file from target computer

Prototype long RemoveFile(BSTR filename);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filename Enter the name of a file on the target
computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.RemoveFile method removes the file named
filename from the target computer file system. filename can be a
relative or absolute path name on the target computer.

3-17

xPCFileSystem.RMDIR

Purpose Remove folder from target computer

Prototype long RMDIR(BSTR dirname);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dirname Enter the name of a folder on the target
computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.RMDIR method removes a folder named dirname
from the target computer file system. dirname can be a relative or
absolute path name on the target computer.

3-18

xPCFileSystem.ScGetFileName

Purpose Get name of file for scope

Prototype BSTR ScGetFileName(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return Returns the name of the file for the scope.

Description The xPCFileSystem.ScGetFileName method returns the name of the
file to which scope scNum will save signal data.

See Also API method xPCFileSystem.ScSetFileName

3-19

xPCFileSystem.ScGetWriteMode

Purpose Get write mode of file for scope

Prototype long ScGetWriteMode(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return This method returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower, but
the file system maintains the actual file size.

Description The xPCFileSystem.ScGetWriteMode method returns the write mode
of the file for the scope.

See Also API method xPCFileSystem.ScSetWriteMode

3-20

xPCFileSystem.ScGetWriteSize

Purpose Get block write size of data chunks

Prototype long ScGetWriteSize(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return This method returns the block size, in bytes, of the data chunks.

Description The xPCFileSystem.ScGetWriteSize method gets the block size, in
bytes, of the data chunks.

See Also API method xPCFileSystem.ScSetWriteSize

3-21

xPCFileSystem.ScSetFileName

Purpose Specify file name to contain signal data

Prototype long ScSetFileName(long scNum, BSTR filename);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] filename Enter the name of a file to contain the signal
data.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetFileName method sets the name of the file
to which the scope will save the signal data. The Simulink Real-Time
software creates this file in the target computer file system. Note that
you can only call this method when the scope is stopped.

See Also API method xPCFileSystem.ScGetFileName

3-22

xPCFileSystem.ScSetWriteMode

Purpose Specify when file allocation table entry is updated

Prototype long ScSetWriteMode(long scNum, long writeMode);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] writeMode Enter an integer for the write mode:

0 Enables lazy write mode

1 Enables commit write mode

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetWriteMode method specifies when a file
allocation table (FAT) entry is updated. Both modes write the signal
data to the file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower,
but the file system maintains the actual file size.

See Also API method xPCFileSystem.ScSetWriteMode

Scope object property Mode

3-23

xPCFileSystem.ScSetWriteSize

Purpose Specify that memory buffer collect data in multiples of write size

Prototype long ScSetWriteSize(long scNum, long writeSize);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] writeSize Enter the block size, in bytes, of the data
chunks.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetWriteSize method specifies that a memory
buffer collect data in multiples of writeSize. By default, this parameter
is 512 bytes, which is the typical disk sector size. Using a block size
that is the same as the disk sector size provides better performance.
writeSize must be a multiple of 512.

See Also API method xPCFileSystem.ScGetWriteSize

Scope object property WriteSize

3-24

xPCFileSystem.WriteFile

Purpose Write to file on target computer

Prototype long WriteFile(long fileHandle, long numbytes,
VARIANT buffer);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] fileHandle Enter the file handle of an open file on the
target computer.

[in] numbytes Enter the number of bytes this method is
to write into the file.

[in] buffer The contents to write to fileHandle are
stored in buffer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.WriteFile method writes the contents of the
VARIANT buffer, of type Byte, to the file specified by fileHandle on
the target computer. The fileHandle parameter is the handle of a
file previously opened by xPCFSOpenFile. numbytes is the number of
bytes to write to the file.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.OpenFile,
xPCFileSystem.ReadFile

3-25

xPCProtocol.Close

Purpose Close RS-232 or TCP/IP communication connection

Prototype long Close();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCProtocol.Close method closes the communication channel
opened by xPCProtocol.RS232Connect or xPCProtocol.TcpIpConnect.

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

3-26

xPCProtocol.GetLoadTimeOut

Purpose Return current timeout value for target application initialization

Prototype long GetLoadTimeOut();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the method detects an error, it returns -1. Otherwise, it returns the
number of seconds allowed for the initialization of the target application.

Description The xPCProtocol.GetLoadTimeOut method returns the number of
seconds allowed for the initialization of the target application.

When you load a new target application onto the target computer, the
method xPCTarget.LoadApp waits for a certain amount of time before
checking to see whether the initialization of the target application is
complete. In the case where initialization of the target application is
not complete, the method xPCTarget.LoadApp returns a timeout error.
By default, xPCTarget.LoadApp checks five times to see whether the
target application is ready, with each attempt taking about 1 second.
However, for larger models or models requiring longer initialization
(for example, those with thermocouple boards), the default might not
be long enough and a spurious timeout is generated. The method
xPCProtocol.SetLoadTimeOutxPCProtocol.SetLoadTimeOut sets the
timeout to a different number.

Use the xPCProtocol.GetLoadTimeOut method if you suspect that the
current number of seconds (the timeout value) is too short. Then use
the xxPCProtocol.SetLoadTimeOut method to set the timeout to a
higher number.

3-27

xPCProtocol.GetxPCErrorMsg

Purpose Return error string

Prototype BSTR GetxPCErrorMsg();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the xPCProtocol.GetxPCErrorMsg method completes without
detecting an error, it returns the string for the last reported error.

Description The xPCProtocol.GetxPCErrorMsg method returns the string of the
last error reported by another COM API method. This value is reset
every time you call a new method. Therefore, you should check this
constant value immediately after a call to an API COM method. You
can use this method in conjunction with the xPCProtocol.isxPCError
method, which detects that an error has occurred.

See Also API function xPCProtocol.isxPCError

3-28

xPCProtocol.Init

Purpose Initialize Simulink Real-Time API DLL

Prototype long Init();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the Simulink Real-Time DLL, xpcapi.dll loads without causing
xPCProtocol.Init to detect an error, the method returns 0. If
xpcapi.dll fails to load, this method returns -1.

Description The xPCProtocol.Init method initializes the Simulink Real-Time API
by loading the Simulink Real-Time DLL, xpcapi.dll, into memory.
To load xpcapi.dll into memory, the method requires that the
xpcapi.dll file be in one of the following folders:

• The folder in which the application is loaded

• The current folder

• The Windows system folder

3-29

xPCProtocol.isxPCError

Purpose Return error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCProtocol

Return If an error occurred, the method returns 1. Otherwise, it returns 0.

Description Use the xPCProtocol.isxPCError method to check for errors that
might occur after a call to the xPCProtocol class methods. If the method
detects that an error occurred, call the xPCProtocol.GetxPCErrorMsg
to get the string for the error.

See Also API function xPCProtocol.GetxPCErrorMsg

3-30

xPCProtocol.Port

Purpose Contain communication channel index

Prototype long Port();

Member
Of

XPCAPICOMLIB.xPCProtocol

Return If the method detects an error, it returns a nonpositive number.
Otherwise, it returns a positive number (the communication channel
index).

Description The xPCProtocol.Port property contains the communication channel
index if connection with the target computer succeeds. Note that you
only need to use this property when working with a model-specific COM
library that you generate from a Simulink model.

3-31

xPCProtocol.Reboot

Purpose Reboot target computer

Prototype long Reboot();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCProtocol.Reboot method reboots the target computer.
This function does not close the connection to the target computer.
You should explicitly close the connection, then reestablish the
connection once the target computer has rebooted. Use the methods
xPCProtocol.RS232Connect or xPCProtocol.TcpIpConnect to
reestablish the connection.

3-32

xPCProtocol.RS232Connect

Purpose Open RS-232 connection to target computer

Prototype long RS232Connect(long comport, long baudrate);

Member
Of

XPCAPICOMLib.xPCProtocol

Arguments [in] comport Index of the COM port to be used (0 is COM1, 1 is
COM2, and so forth).

[in] baudrate baudratemust be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCProtocol.RS232Connect method returns the port value for the
connection. If the method detects an error, it returns 0. Otherwise, it
returns -1.

Description The xPCProtocol.RS232Connectmethod initiates an RS-232 connection
to an Simulink Real-Time system. It returns the port value for the
connection. Be sure to pass this value to every Simulink Real-Time API
function that requires a port value.

If you enter a value of 0 for baudrate, this function sets the baud rate to
the default value (115200).

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

3-33

xPCProtocol.SetLoadTimeOut

Purpose Change initialization timeout value

Prototype long SetLoadTimeOut(long timeOut);

Member
Of

XPCAPICOMLib.xPCProtocol

Arguments [in] timeOut Enter the new initialization timeout value.

Return If the method detects an error, it returns 0. Otherwise, it
returns -1. To get the string description for the error, use
xPCProtocol.GetxPCErrorMsg.

Description The xPCProtocol.SetLoadTimeOut method changes the timeout
value for initialization. The timeOut value is the time the method
xPCTarget.LoadApp waits to check whether the model initialization
for a new application is complete before returning. It enables you to
set the number of initialization attempts to be made before signaling
a timeout. When a new target application is loaded onto the target
computer, the method xPCTarget.LoadApp waits for a certain time to
check whether the model initialization is complete before returning.
If the model initialization is incomplete within the allotted time,
xPCTarget.LoadApp returns a timeout error.

By default, xPCTarget.LoadApp checks for target readiness five times,
with each attempt taking approximately 1 second (less if the target
is ready). However, for larger models or models requiring longer
initialization (for example, those with thermocouple boards), the default
might not be long enough and a spurious timeout can be generated.

3-34

xPCProtocol.TargetPing

Purpose Ping target computer

Prototype long TargetPing;

Member
Of

XPCAPICOMLIB.xPCProtocol

Return The xPCProtocol.TargetPing method does not return an error
status. This method returns 1 if it reaches the target computer and
the computer responds. If the target computer does not respond, the
method returns 0.

Description The xPCProtocol.TargetPing method pings the target computer and
returns 1 or 0 depending on whether the target responds or not. Errors
such as the inability to connect to the target are ignored.

If you are using TCP/IP, note that xPCProtocol.TargetPing will
cause the target computer to close the TCP/IP connection. You can
use xPCProtocol.TcpIpConnect to reconnect. You can also use
this xPCProtocol.TargetPing feature to close the target computer
connection in the event of an aborted TCP/IP connection (for example, if
your host side program crashes).

3-35

xPCProtocol.TcpIpConnect

Purpose Open TCP/IP connection to target computer

Prototype long TcpIpConnect(BSTR TargetIpAddress, BSTR TargetPort);

Member
Of

XPCAPICOMLIB.xPCProtocol

Arguments [in] TargetIpAddress Enter the IP address of the target
as a dotted decimal string. For
example, "192.168.0.10".

[in] TargetPort Enter the associated IP port as a
string. For example, "22222".

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCProtocol.TcpIpConnect method opens a connection to the
TCP/IP location specified by the IP address. Use this integer as the
TargetPort variable in the Simulink Real-Time COM API functions
that require a port value.

3-36

xPCProtocol.Term

Purpose Unload Simulink Real-Time API DLL from memory

Prototype long Term();

Member
Of

XPCAPICOMLib.xPCProtocol

Return The xPCProtocol.Term method always returns -1.

Description The xPCProtocol.Term method unloads the Simulink Real-Time API
DLL (xpcapi.dll) from memory. You must call this method when you
want to terminate your COM API application.

3-37

xPCScopes.AddFileScope

Purpose Create new file scope

Prototype long AddFileScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1, 2,
3. . .

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.AddFileScope method creates a new file scope on the
target computer.

Calling the xPCScopes.AddFileScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

3-38

xPCScopes.AddHostScope

Purpose Create new host scope

Prototype long AddHostScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1, 2,
3. . .

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.AddHostScope method creates a new host scope on
the target computer.

Calling the xPCScopes.AddHostScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

3-39

xPCScopes.AddTargetScope

Purpose Create new target scope

Prototype long AddTargetScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1,
2, 3. . .

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description If the method detects an error, it returns 0. The
xPCScopes.AddTargetScope method creates a new scope on
the target computer.

Calling the xPCScopes.AddTargetScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

3-40

xPCScopes.GetScopes

Purpose Get and copy list of scope numbers

Prototype VARIANT GetScopes(long size);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] size Specify the size of the VARIANT array returned. This
argument must be greater than MAX_SCOPES-1. The
elements in the array consist of a list of unsorted
integers, terminated by -1.

Return The xPCScopes.GetScopes method returns a VARIANT array with
elements containing a list of scope numbers from the target application.

Description The xPCScopes.GetScopes method gets a VARIANT array with elements
containing a list of scope numbers currently defined for the target
application. Specify the size of the VARIANT array returned. This size
must be greater than the maximum number of scopes -1, up to a
maximum of 30 scopes. The elements in the array consist of a list of
unsorted integers, terminated by -1.

3-41

xPCScopes.GetxPCError

Purpose Get error string

Prototype BSTR GetxPCError();

Member
Of

XPCAPICOMLib.xPCScopes

Return The xPCScopes.GetxPCError method returns the string for the last
reported error. If the software has not reported an error, this method
returns 0.

Description The xPCScopes.GetxPCError method gets the string of the last
reported error by another COM API method. This value is reset every
time you call a new method. Therefore, you should check this constant
value immediately after a call to an API COM method. You can use this
method in conjunction with the xPCScopes.isxPCError method, which
detects that an error has occurred.

See Also API function xPCScopes.isxPCError

3-42

xPCScopes.Init

Purpose Initialize scope object to communicate with target computer

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] xPCProtocol Specify the communication port of the target
computer object for which the scope is to be
initialized.

Return If the xPCScopes.Init method initializes the scope object without
detecting an error, it returns 0. If the scope object fails to initialize, the
method returns -1.

Description The xPCScopes.Initmethod initializes the scope object to communicate
with the target computer referenced by the xPCProtocol object.

3-43

xPCScopes.IsScopeFinished

Purpose Get data acquisition status for scope

Prototype long IsScopeFinished(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns -1. If a scope finishes a data
acquisition cycle, this method returns 1. If the scope is in the process of
acquiring data, this method returns 0.

Description The xPCScopeos.IsScopeFinished method gets a 1 or 0 depending on
whether scope scNum is finished (state of SCST_FINISHED) or not. You
can also call this function for target scopes; however, because target
scopes restart immediately, it is almost impossible to find these scopes
in the finished state.

3-44

xPCScopes.isxPCError

Purpose Get error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCScopes

Return If an error occurred, the method returns 1. Otherwise, it returns 0.

Description Use the xPCScopes.isxPCError method to check for errors that might
occur after a call to the xPCScopes class methods. If the software
detects that an error occurred, call the xPCScopes.GetxPCErrormethod
to get the string for the error.

See Also API function xPCScopes.GetxPCError

3-45

xPCScopes.RemScope

Purpose Remove scope

Prototype long RemScope(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.RemScope method removes the scope with number
scNum. Attempting to remove a nonexistent scope causes an error. For a
list of existing scopes, use xPCScopes.GetScopes.

3-46

xPCScopes.ScopeAddSignal

Purpose Add signal to scope

Prototype long ScopeAddSignal(long scNum, long sigNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] sigNum Enter a signal number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeAddSignal method adds the signal with number
sigNum to the scope scNum. The signal should not already exist in the
scope. You can use xPCScopes.ScopeGetSignals to get a list of the
signals already present. Use the xPCTarget.GetSignalIdx method
to get the signal number.

3-47

xPCScopes.ScopeGetAutoRestart

Purpose Scope autorestart value

Prototype long ScopeGetAutoRestart(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetAutoRestart method returns the scope
autorestart flag value (1 if enabled, 0 if disabled). If the method detects
an error, it returns -1.

Description The xPCScopes.ScopeGetAutoRestartmethod gets the autorestart flag
value for scope scNum. Autorestart flag can be disabled (0) or enabled (1).

3-48

xPCScopes.ScopeGetData

Purpose Copy scope data to array

Prototype VARIANT ScopeGetData(long scNum, long signal_id,
long start,
long numsamples, long decimation);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] signal_id Enter a signal number. Enter -1 to get
time stamped data.

[in] start Enter the first sample from which data
retrieval is to start.

[in] numsamples Enter the number of samples retrieved
with a decimation of decimation, starting
from the start value.

[in] decimation Enter a value such that every decimation
sample is retrieved in a scope window.

Return The xPCScopes.ScopeGetData method returns a VARIANT array with
elements containing the data used in a scope.

Description The xPCScopes.ScopeGetData method gets the data used in a scope.
Use this function for scopes of type SCTYPE_HOST. The scope must be
either in state Finished or in state Interrupted for the data to be
retrievable. (Use the xPCScopes.ScopeGetState method to check the
state of the scope.) The data must be retrieved one signal at a time. The
calling function determines and allocates the space ahead of time to
store the scope data. Use the method xPCScopes.ScopeGetSignals to
get the list of signals in the scope for signal_id.

3-49

xPCScopes.ScopeGetData

To get time stamped data, specify -1 for signal_id. From the output,
you can then get the number of nonzero elements.

3-50

xPCScopes.ScopeGetDecimation

Purpose Get decimation of scope

Prototype long ScopeGetDecimation(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetDecimation method returns the decimation
of scope scNum. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetDecimation method gets the decimation of
scope scNum. The decimation is a number, N, meaning every Nth sample
is acquired in a scope window.

3-51

xPCScopes.ScopeGetNumPrePostSamples

Purpose Get number of pre- or posttriggering samples before triggering scope

Prototype long ScopeGetNumPrePostSamples(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetNumPrePostSamples method returns the
number of samples for pre- or posttriggering for scope scNum. If an
error occurs, this method returns -1.

Description The xPCScopes.ScopeGetNumPrePostSamples method gets the number
of samples for pre- or posttriggering for scope scNum. A negative number
implies pretriggering, whereas a positive number implies posttriggering
samples.

3-52

xPCScopes.ScopeGetNumSamples

Purpose Get number of samples in one data acquisition cycle

Prototype long ScopeGetNumSamples(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetNumSamples method returns the number of
samples in the scope scNum. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetNumSamples method gets the number of
samples in one data acquisition cycle for scope scNum.

3-53

xPCScopes.ScopeGetSignals

Purpose Get list of signals

Prototype VARIANT ScopeGetSignals(long scNum, long size);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] size Enter an integer to allocate the number of elements
to be returned in the VARIANT array. This size is
required for the method to copy the list of signals
into the VARIANT array. The maximum number of
signals is 10.

Return The xPCScopes.ScopeGetSignals method returns a VARIANT array
with elements consisting of the list of signals defined for a scope.

Description The xPCScopes.ScopeGetSignals method gets the list of signals
defined for scope scNum. You can use the constant MAX_SIGNALS.

3-54

xPCScopes.ScopeGetStartTime

Purpose Get last data acquisition cycle start time

Prototype double ScopeGetStartTime(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetStartTime method returns the start time
for the last data acquisition cycle of a scope. If the method detects an
error, it returns -1.

Description The xPCScopes.ScopeGetStartTime method gets the time at which the
last data acquisition cycle for scope scNum started. This is only valid
for scopes of type SCTYPE_HOST.

3-55

xPCScopes.ScopeGetState

Purpose Get state of scope

Prototype BSTR ScopeGetState(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetState method returns the state of scope
scNum. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetState method gets the state of scope scNum,
or -1 upon error.

Constants to find the scope state have the following meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to
start.

SCST_PREACQUIRING 5 Scope acquires a predefined
number of samples before
triggering.

SCST_WAITFORTRIG 1 After a scope is finished with
the preacquiring state, it waits
for a trigger. If the scope does
not preacquire data, it enters
the wait for trigger state.

SCST_ACQUIRING 2 Scope is acquiring data. The
scope enters this state when
it leaves the wait for trigger
state.

3-56

xPCScopes.ScopeGetState

Constant Value Description

SCST_FINISHED 3 Scope is finished acquiring
data when it has attained the
predefined limit.

SCST_INTERRUPTED 4 The user has stopped
(interrupted) the scope.

3-57

xPCScopes.ScopeGetTriggerLevel

Purpose Get trigger level for scope

Prototype double ScopeGetTriggerLevel(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerLevel method returns the scope
trigger level. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerLevel method gets the trigger level
for scope scNum.

3-58

xPCScopes.ScopeGetTriggerMode

Purpose Get trigger mode for scope

Prototype long ScopeGetTriggerMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerMode method returns the scope
trigger mode. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerMode method gets the trigger mode
for scope scNum. Use the constants here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The
scope triggers when it is ready
to trigger, regardless of the
circumstances.

TRIGMD_SOFTWARE 1 Only user intervention can
trigger the scope. No other
triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only
after a signal has crossed a
value.

TRIGMD_SCOPE 3 The scope is triggered by
another scope at the trigger
point of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

3-59

xPCScopes.ScopeGetTriggerMode

See Also API function xPCScopes.ScopeGetTriggerModeStr

3-60

xPCScopes.ScopeGetTriggerModeStr

Purpose Get trigger mode as string

Prototype BSTR ScopeGetTriggerModeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerModeStr method returns a string
containing the trigger mode string.

Description The xPCScopes.ScopeGetTriggerModeStr method gets the trigger
mode string for scope scNum. This method returns one of the following
strings.

Constant Description

FreeRun There is no trigger mode. The scope triggers
when it is ready to trigger, regardless of the
circumstances.

Software Only user intervention can trigger the scope. No
other triggering is possible.

Signal The scope is triggered only after a signal has
crossed a value.

Scope The scope is triggered by another scope at the
trigger point of the triggering scope, modified by
the value of triggerscopesample (see scopedata).

See Also API function xPCScopes.ScopeGetTriggerMode

3-61

xPCScopes.ScopeGetTriggerSample

Purpose Get sample number for triggering scope

Prototype long ScopeGetTriggerSample(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSamplemethod returns a nonnegative
integer for a real sample, and -1 for the special case where triggering
is at the end of the data acquisition cycle for a triggering scope. If the
method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerSample method gets the number
of samples a triggering scope (scNum) acquires before starting data
acquisition on a second scope. This value is a nonnegative integer for a
real sample, and -1 for the special case where triggering is at the end of
the data acquisition cycle for a triggering scope.

3-62

xPCScopes.ScopeGetTriggerSignal

Purpose Get trigger signal for scope

Prototype long ScopeGetTriggerSignal(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSignal method returns the scope
trigger signal. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerSignal method gets the trigger
signal for scope scNum.

3-63

xPCScopes.ScopeGetTriggerSlope

Purpose Get trigger slope for scope

Prototype long ScopeGetTriggerSlope(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSlope method returns the scope
trigger slope. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerSlope method gets the trigger slope
of scope scNum. Use the constants here to interpret the trigger slope:

String Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger slope must be
rising when the signal crosses
the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be
falling when the signal
crosses the trigger value.

See Also API function xPCScopes.ScopeGetTriggerSlopeStr

3-64

xPCScopes.ScopeGetTriggerSlopeStr

Purpose Get trigger slope as string

Prototype BSTR ScopeGetTriggerSlopeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSlopeStr method returns a string
containing the trigger slope string.

Description The xPCScopes.ScopeGetTriggerSlopeStr method gets the trigger
slope string for scope scNum. This method returns one of the following
strings:

String Description

Either The trigger slope can be either rising or falling.

Rising The trigger slope must be rising when the signal
crosses the trigger value.

Falling The trigger slope must be falling when the signal
crosses the trigger value.

See Also API function xPCScopes.ScopeGetTriggerSlope

3-65

xPCScopes.ScopeGetType

Purpose Get type of scope

Prototype BSTR ScopeGetType(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetType method returns the scope type as a
string. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetType method gets the type of scope scNum.
This method returns one of the following strings:

String Description

HOST Host scope

Target Target scope

3-66

xPCScopes.ScopeRemSignal

Purpose Remove signal from scope

Prototype long ScopeRemSignal(long scNum, long sigNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] sigNum Enter a signal number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeRemSignal method removes a signal from the
scope with number scNum. The scope must already exist, and signal
number sigNum must exist in the scope. Use xPCScopes.GetScopes to
determine the existing scopes, and use xPCScopes.ScopeGetSignals
to determine the existing signals for a scope. Use this function only
when the scope is stopped. Use xPCScopes.ScopeGetState to check
the state of the scope.

3-67

xPCScopes.ScopeSetAutoRestart

Purpose Scope autorestart value

Prototype long ScopeSetAutoRestart(long scNum, long onoff);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] onoff Enter value to enable (1) or disable (0)
scope autorestart.

Return The xPCScopes.ScopeSetAutoRestart method returns the scope
autorestart flag value (1 if enabled, 0 if disabled). If the method detects
an error, it returns -1.

Description The xPCScopes.ScopeSetAutoRestart method sets the autorestart flag
value for scope scNum. Autorestart flag can be disabled (0) or enabled (1).

3-68

xPCScopes.ScopeSetDecimation

Purpose Set decimation of scope

Prototype long ScopeSetDecimation(long scNum, long decimation);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] decimation Enter an integer for the decimation.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetDecimation method sets the decimation of
scope scNum. The decimation is a number, N, meaning every Nth sample
is acquired in a scope window. Use this function only when the scope is
stopped. Use xPCScopes.ScopeGetState to check the state of the scope.

3-69

xPCScopes.ScopeSetNumPrePostSamples

Purpose Set number of pre- or posttriggering samples before triggering scope

Prototype long ScopeSetNumPrePostSamples(long scNum, long prepost);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] prepost A negative number means pretriggering, while
a positive number means posttriggering. This
function can only be used when the scope is
stopped.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetNumPrePostSamples method sets the number
of samples for pre- or posttriggering for scope scNum to prepost. Use this
method only when the scope is stopped. Use xPCScopes.ScopeGetState
to check the state of the scope. Use the xPCScopes.GetScopes method
to get a list of scope numbers.

3-70

xPCScopes.ScopeSetNumSamples

Purpose Set number of samples in one data acquisition cycle

Prototype long ScopeSetNumSamples(long scNum, long samples);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] samples Enter the number of samples you want to acquire
in one cycle.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetNumSamples method sets the number of
samples for scope scNum to samples. Use this function only when the
scope is stopped. Use xPCScopes.ScopeGetState to check the state
of the scope.

3-71

xPCScopes.ScopeSetTriggerLevel

Purpose Set trigger level for scope

Prototype long ScopeSetTriggerLevel(long scNum, double level);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] level Value for a signal to trigger data acquisition with
a scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerLevel method sets the trigger level to
level for scope scNum. Use this function only when the scope is stopped.
Use xPCScopes.ScopeGetStateto check the state of the scope.

3-72

xPCScopes.ScopeSetTriggerMode

Purpose Set trigger mode of scope

Prototype long ScopeSetTriggerMode(long scNum, long triggermode);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] triggermode Trigger mode for a scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerMode method sets the trigger mode of
scope scNum to triggermode. Use this method only when the scope is
stopped. Use xPCScopes.ScopeGetStateto check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

Use the constants defined here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode.
The scope triggers when it is
ready to trigger, regardless
of the circumstances. This is
the default.

TRIGMD_SOFTWARE 1 Only user intervention can
trigger the scope. No other
triggering is possible.

3-73

xPCScopes.ScopeSetTriggerMode

Constant Value Description

TRIGMD_SIGNAL 2 The scope is triggered only
after a signal has crossed a
value.

TRIGMD_SCOPE 3 The scope is triggered by
another scope at the trigger
point of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

3-74

xPCScopes.ScopeSetTriggerSample

Purpose Set sample number for triggering scope

Prototype long ScopeSetTriggerSample(long scNum, long trigScSample);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] trigScSample Enter a nonnegative integer for the
number of samples acquired by the
triggering scope before starting data
acquisition on a second scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerSample method sets the number of
samples (trigScSample) a triggering scope acquires before it triggers
a second scope (scNum). Use the xPCScopes.GetScopes method to get
a list of scopes.

For meaningful results, set trigScSample between -1 and (nSamp-1).
nSamp is the number of samples in one data acquisition cycle for the
triggering scope. If you specify too large a value, the scope is never
triggered.

If you want to trigger a second scope at the end of a data acquisition
cycle for the triggering scope, use a value of -1 for trigScSamp.

3-75

xPCScopes.ScopeSetTriggerSignal

Purpose Select signal to trigger scope

Prototype long ScopeSetTriggerSignal(long scNum, long triggerSignal);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] trigSignal Enter a signal number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerSignalmethod sets the trigger signal
of scope scNum to trigSig. The trigger signal trigSig must be one of
the signals in the scope. Use this method only when the scope is stopped.
You can use xPCScopes.ScopeGetSignals to get the list of signals in
the scope. UsexPCScopes.ScopeGetState to check the state of the
scope. Use the xPCScopes.GetScopes method to get a list of scopes.

3-76

xPCScopes.ScopeSetTriggerSlope

Purpose Set slope of signal that triggers scope

Prototype long ScopeSetTriggerSlope(long scNum, long triggerslope);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] triggerSlope Enter the slope mode for the signal that triggers
the scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerSlope method sets the trigger slope
of scope scNum to trigSlope. Use this method only when the scope is
stopped. Use xPCScopes.ScopeGetState to check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

Use the constants defined here to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger signal value must
be rising when it crosses the
trigger value.

TRIGSLOPE_FALLING 2 The trigger signal value must
be falling when it crosses the
trigger value.

3-77

xPCScopes.ScopeSoftwareTrigger

Purpose Set software trigger of scope

Prototype long ScopeSoftwareTrigger(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSoftwareTrigger method triggers scope scNum.
The scope must be in the state Waiting for trigger for this method to
succeed. Use xPCScopes.ScopeGetState to check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

You can use the xPCScopes.ScopeSoftwareTrigger method to trigger
the scope, regardless of the trigger mode.

3-78

xPCScopes.ScopeStart

Purpose Start data acquisition for scope

Prototype long ScopeStart(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeStart method starts or restarts the data
acquisition of scope scNum. If the scope does not have to preacquire
samples, it enters the Waiting for Trigger state. The scope must
be in state Waiting to Start, Finished, or Interrupted for this
function to succeed. Call xPCScopes.ScopeGetState to check the
state of the scope or, for host scopes that are already started, call
xPCScopes.IsScopeFinished. Use the xPCScopes.GetScopes method
to get a list of scopes.

3-79

xPCScopes.ScopeStop

Purpose Stop data acquisition for scope

Prototype long ScopeStop(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeStop method stops the scope scNum. This sets
the scope to the Interrupted state. The scope must be running for
this function to succeed. Use xPCScopes.ScopeGetState to determine
the state of the scope. Use the xPCScopes.GetScopes method to get
a list of scopes.

3-80

xPCScopes.TargetScopeGetGrid

Purpose Get status of grid line for particular scope

Prototype long TargetScopeGetGrid(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetGrid method returns the state of the
grid lines for scope scNum. If the method detects an error, it returns -1.

Description The xPCScopes.TargetScopeGetGrid method gets the state of the grid
lines for scope scNum (which must be of type SCTYPE_TARGET). A return
value of 1 implies grid on, while 0 implies grid off. Note that when the
scope mode is set to SCMODE_NUMERICAL, the grid is not drawn even
when the grid mode is set to 1.

Tip

• Use the xPCScopes.GetScopes method to get a list of scopes.

• Use xPCScopes.TargetScopeGetMode and
xPCScopes.TargetScopeSetMode to retrieve and set the scope mode.

3-81

xPCScopes.TargetScopeGetMode

Purpose Get scope mode for displaying signals

Prototype long TargetScopeGetMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetMode method returns the value
corresponding to the scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If the method detects an error, it returns -1.

Description The xPCScopes.TargetScopeGetMode method gets the mode of
the scope scNum, which must be of type SCTYPE_TARGET. Use the
xPCScopes.GetScopes method to get a list of scopes.

See Also API function xPCScopes.TargetScopeGetModeStr

3-82

xPCScopes.TargetScopeGetModeStr

Purpose Get scope mode string for displaying signals

Prototype BSTR TargetScopeGetModeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetModeStr method returns the string
corresponding to the scope mode. The possible strings are

• Numerical

• Redraw

• Sliding

• Rolling

Description The xPCScopes.TargetScopeGetModeStr method gets the mode string
of the scope scNum, which must be of type SCTYPE_TARGET. Use the
xPCScopes.GetScopes method to get a list of scopes.

See Also API function xPCScopes.TargetScopeGetMode

3-83

xPCScopes.TargetScopeGetViewMode

Purpose Get view mode for target computer display

Prototype long TargetScopeGetViewMode();

Member
Of

XPCAPICOMLIB.xPCScopes

Return The xPCScopes.TargetScopeGetViewMode method returns the view
mode for the target computer screen. If the method detects an error, it
returns -1.

Description The xPCScopes.TargetScopeGetViewMode method gets the view (zoom)
mode for the target computer display. If the returned value is not zero,
the number is of the scope currently displayed on the screen. If the
value is 0, then all defined scopes are displayed on the target computer
screen, but no scopes are in focus (all scopes are unzoomed).

3-84

xPCScopes.TargetScopeGetYLimits

Purpose Get y-axis limits for scope

Prototype VARIANT TargetScopeGetYLimits(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetYLimits method returns the upper
and lower limits for target scopes.

Description The xPCScopes.TargetScopeGetYLimits method gets and copies the
upper and lower limits for a scope of type SCTYPE_TARGET and with scope
number scNum. If both elements are zero, the limits are autoscaled. Use
the xPCScopes.GetScopes method to get a list of scopes.

3-85

xPCScopes.TargetScopeSetGrid

Purpose Set grid mode for scope

Prototype long TargetScopeSetGrid(long scNum, long gridonoff);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] gridonoff Enter a grid value (0 or 1).

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetGrid method sets the grid of a scope
of type SCTYPE_TARGET and scope number scNum to gridonoff. If
gridonoff is 0, the grid is off. If gridonoff is 1, the grid is on and grid
lines are drawn on the scope window. When the drawing mode of scope
scNum is set to SCMODE_NUMERICAL, the grid is not drawn even when
the grid mode is set to 1. Use the xPCScopes.GetScopes method to
get a list of scopes.

3-86

xPCScopes.TargetScopeSetMode

Purpose Set display mode for scope

Prototype long TargetScopeSetMode(long scNum, long mode);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

in] mode Enter the value for the mode.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetMode method sets the mode of a scope
of type SCTYPE_TARGET and scope number scNum to mode. You can use
one of the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

Use the xPCScopes.GetScopes method to get a list of scopes.

3-87

xPCScopes.TargetScopeSetViewMode

Purpose Set view mode for scope

Prototype long TargetScopeSetViewMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetViewMode method sets the target
computer screen to display one scope with scope number scNum. If you
set scNum to 0, the target computer screen displays all the defined
scopes. Use the xPCScopes.GetScopes method to get a list of scopes.

3-88

xPCScopes.TargetScopeSetYLimits

Purpose Set y-axis limits for scope

Prototype long TargetScopeSetYLimits(long scNum, SAFEARRAY(double)*
Ylimitarray);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in, out] Ylimitarray Enter a two-element array.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetYLimits method sets the y-axis limits
for a scope with scope number scNum and type SCTYPE_TARGET to the
values in the double array YlimitArray. The first element is the lower
limit, and the second element is the upper limit. Set both limits to
0.0 to specify autoscaling. Use the xPCScopes.GetScopes method to
get a list of scopes.

3-89

xPCTarget.AverageTET

Purpose Get average task execution time

Prototype double AverageTET();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.AverageTET method returns the average task execution
time (TET) for the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.AverageTET method gets the TET for the target
application. You can use this function when the target application is
running or when it is stopped.

3-90

xPCTarget.GetAppName

Purpose Get target application name

Prototype BSTR GetAppName();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetAppName method returns a string with the name
of the target application.

Description The xPCTarget.GetAppName method gets the name of the target
application. You can use the return value, model_name, in a printf or
similar statement. In case of error, the string is unchanged. Be sure
to allocate enough space to accommodate the longest target name you
have.

3-91

xPCTarget.GetExecTime

Purpose Get execution time for target application

Prototype double GetExecTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetExecTime method returns the current execution
time for a target application. If the method detects an error, it returns
-1.

Description The xPCTarget.GetExecTime method gets the current execution time
for the running target application. If the target application is stopped,
the value is the last running time when the target application was
stopped. If the target application is running, the value is the current
running time.

3-92

xPCTarget.GetNumOutputs

Purpose Get number of outputs

Prototype long GetNumOutputs();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumOutputs method returns the number of outputs
in the current target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetNumOutputs method gets the number of outputs in
the target application. The number of outputs equals the sum of the
input signal widths of the output blocks at the root level of the Simulink
model.

3-93

xPCTarget.GetNumParams

Purpose Get number of tunable parameters

Prototype long GetNumParams();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumParams method returns the number of tunable
parameters in the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetNumParams method gets the number of tunable
parameters in the target application. Use this method to see how many
parameters you can get or modify.

3-94

xPCTarget.GetNumSignals

Purpose Get number of signals

Prototype long GetNumSignals();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumSignals method returns the number of signals
in the target application. If the method detects an error, it returns -1.

Description The xPCTarget.GetNumSignalsmethod gets the total number of signals
in the target application that can be monitored from the host. Use this
method to see how many signals you can monitor.

3-95

xPCTarget.GetNumStates

Purpose Get number of states

Prototype long GetNumStates();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumStates method returns the number of states in
the target application. If the method detects an error, it returns -1.

Description The xPCTarget.GetNumStates method gets the number of states in the
target application.

3-96

xPCTarget.GetOutputLog

Purpose Copy output log data to array

Prototype VARIANT GetOutputLog(long start, long numsamples,
long decimation,
long output_id);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from
the output log.

[in] decimation Select whether to copy all the sample values
or every Nth value.

[in] output_id Enter an output identification number.

Return The xPCTarget.GetOutputLog method returns output log data. You
get the data for each output signal. If the method detects an error, it
returns VT_ERROR, a scalar.

Description The xPCTarget.GetOutputLog method gets the output log and copies
that log to an array. Output IDs range from 0 to (N-1), where N is the
return value of xPCTarget.GetNumOutputs. Entering 1 for decimation
copies all values. Entering N copies every Nth value.

For start, the sample indices range from 0 to (N-1), where N is the
return value of xPCTarget.NumLogSamples. Get the maximum number
of samples by calling the method xPCTarget.NumLogSamples.

Note that the target application must be stopped before you get the
output log data.

3-97

xPCTarget.GetParam

Purpose Get parameter values

Prototype VARIANT GetParam(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Enter the index for a parameter.

Return The xPCTarget.GetParam method returns the parameter values of a
parameter.

Description The xPCTarget.GetParam method gets the parameter values of a
parameter identified by paramIdx. This method returns an array
of type VARIANT containing the parameter values, with the
conversion of the values being done in column-major format.
Each element in the array is a double, regardless of the data
type of the actual parameter. You can query the dimensions of
the array by calling the method xPCTarget.GetParamDims.
See the Microsoft Visual Basic® .NET 2003 solution located in
matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo
for an example of how to use this method.

See Also API method xPCTarget.GetParamDims, xPCTarget.SetParam

3-98

xPCTarget.GetParamDims

Purpose Get row and column dimensions of parameter

Prototype VARIANT GetParamDims(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Parameter index.

Return The xPCTarget.GetParamDims method returns a VARIANT array of two
elements.

Description The xPCTarget.GetParamDims method gets a VARIANT array of two
elements. The first element contains the number of rows of the
parameter, the second element contains the number of columns for
your parameter.

3-99

xPCTarget.GetParamIdx

Purpose Get parameter index

Prototype long GetParamIdx(BSTR blockName, BSTR paramName);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] blockName Enter the full block path generated by the
Simulink Coder software.

[in] paramName Enter the parameter name for a parameter
associated with the block.

Return The xPCTarget.GetParamIdx method returns the parameter index for
the parameter name. If the method detects an error, it returns -1.

Description The xPCTarget.GetParamIdx method gets the parameter index for
the parameter name (paramName) associated with a Simulink block
(blockName). Both blockName and paramName must be identical to those
generated at target application building time. The block names should
be referenced from the file model_namept.m in the generated code,
where model_name is the name of the model. Note that a block can have
one or more parameters.

3-100

xPCTarget.GetParamName

Purpose Get parameter name

Prototype VARIANT GetParamName(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Enter a parameter index.

Return The xPCTarget.GetParamName method returns a VARIANT array that
contains two elements, the block path and parameter name, as strings.

Description The xPCTarget.GetParamName method gets the parameter name
and block name for a parameter with the index paramIdx. If
paramIdx is invalid, xPCGetLastError returns nonzero, and the
strings are unchanged. Get the parameter index with the method
xPCTarget.GetParamIdx.

3-101

xPCTarget.GetSampleTime

Purpose Get sample time

Prototype double GetSampleTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetSampleTime method returns the sample time, in
seconds, of the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetSampleTime method gets the sample time, in
seconds, of the target application. You can get the error by using the
method xPCGetLastError.

3-102

xPCTarget.GetSignal

Purpose Get signal value

Prototype double GetSignal(long sigNum);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigNum Enter a signal number.

Return The xPCTarget.GetSignal method returns the current value of signal
sigNum. If the method detects an error, it returns -1.

Description The xPCTarget.GetSignal method gets the current value of a signal.
Use the xPCTarget.GetSignalIdx method to get the signal number.

3-103

xPCTarget.GetSignalidsfromLabel

Purpose Get signal IDs from signal label

Prototype VARIANT GetSignalidsfromLabel(BSTR sigLabel);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigLabel Enter a signal label.

Return The xPCTarget.GetSignalidsfromLabel method returns a VARIANT
array of the signal elements contained in the signal sigLabel. If no
labels exist, the method returns an empty string.

Description The xPCTarget.GetSignalidsfromLabel method returns a VARIANT
array of the signal elements contained in the signal sigLabel. Signal
labels must be unique.

This method assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal
Properties Controls”). Note that the Simulink Real-Time software
refers to Simulink signal names as signal labels. The creator of the
application should already know the signal name/label.

See Also API method xPCTarget.GetSignalLabel

3-104

xPCTarget.GetSignalLabel

Purpose Get signal label

Prototype BSTR GetSignalLabel(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter a signal index.

Return The xPCTarget.GetSignalLabelmethod returns the label of the signal.
If no labels exist, the method returns an empty string.

Description The xPCTarget.GetSignalLabel method copies and gets the signal
label of a signal with sigIdx. The method returns the signal label.
This method assumes that you already know the signal index. Signal
labels must be unique.

This method assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal
Properties Controls”). Note that the Simulink Real-Time software
refers to Simulink signal names as signal labels. The creator of the
application should already know the signal name/label.

See Also API method xPCTarget.GetSignalidsfromLabel

3-105

xPCTarget.GetSignalIdx

Purpose Get signal index

Prototype long GetSignalIdx(BSTR sigName);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigName Enter a signal name.

Return The xPCTarget.GetSignalIdx method returns the index for the signal
with name sigName. If the method detects an error, it returns -1.

Description The xPCTarget.GetSignalIdx method gets the index of a signal. The
name must be identical to the name generated when the application was
built. You should reference the name from the file model_namebio.m in
the generated code, where model_name is the name of the model. The
creator of the application should already know the signal name.

3-106

xPCTarget.GetSignalName

Purpose Copy signal name to character array

Prototype BSTR GetSignalName(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter a signal index.

Return The xPCTarget.GetSignalName method returns the name of the signal.

Description The xPCTarget.GetSignalName method copies and gets the signal
name, including the block path, of a signal with sigIdx. The method
returns a signal name, which makes it convenient to use in a printf
or similar statement. This method assumes that you already know
the signal index.

3-107

xPCTarget.GetSignals

Purpose Get vector of signal values

Prototype VARIANT GetSignals(long NumOfSignals, SAFEARRAY(int)*
SignalsIdxArray);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] NumOfSignals Enter the number of signals to acquire (the
number of IDs in SignalsIdxArray).

[out] SignalsIdxArray Enter the IDs of the signals to acquire.

Return The xPCTarget.GetSignals method returns a double-valued variant
array containing the current value of a vector of signals. If the method
detects an error, it returns VT_ERROR, a scalar.

Description This function returns the values of a vector of up to 1000 signals as fast
as it can acquire them. The values are converted to doubles regardless
of the actual data type of the signal.

Tip

• Pass an integer array of signal numbers into SignalsIdxArray. Get
the signal numbers with the function xPCTarget.GetSignalIdx.

• The signal values may not be at the same time step. To get signal
values at the same time step, define a scope of type SCTYPE_HOST and
use xPCScopes.ScopeGetData.

The function xPCTarget.GetSignal does the same thing for a single
signal, and could be used multiple times to achieve the same result.

3-108

xPCTarget.GetSignals

However, xPCGetSignals is faster and the signal values are more likely
to be spaced closely together.

See Also API functions xPCTarget.GetSignal, xPCTarget.GetSignalIdx

3-109

xPCTarget.GetSignalWidth

Purpose Get width of signal

Prototype long GetSignalWidth(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter the index of a signal.

Return The xPCTarget.GetSignalWidth method returns the signal width for a
signal with sigIdx. If the method detects an error, it returns -1.

Description The xPCTarget.GetSignalWidth method gets the number of signals for
a specified signal index. Although signals are manipulated as scalars,
the width of the signal might be useful to reassemble the components
into a vector. A signal’s width is the number of signals in the vector.

3-110

xPCTarget.GetStateLog

Purpose Get state log

Prototype VARIANT GetStateLog(long start, long numsamples,
long decimation,
long state_id);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from the
output log.

[in] decimation Select whether to copy all the sample values or
every Nth value.

[in] state_id Enter a state identification number.

[out, retval]
Outarray

The log is stored in Outarray, whose allocation
is the responsibility of the caller.

Return The xPCTarget.GetStateLog method returns the state log. If the
method detects an error, it returns VT_ERROR, a scalar.

Description The xPCTarget.GetStateLog method gets the state log. You get
the data for each state signal in turn by specifying the state_id.
State IDs range from 1 to (N-1), where N is the return value of
xPCTarget.GetNumStates. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For start, the
sample indices range from 0 to (N-1), where N is the return value
of xPCTarget.NumLogSamples. Use the xPCTarget.NumLogSamples
method to get the maximum number of samples.

Note that the target application must be stopped before you get the
number.

3-111

xPCTarget.GetStopTime

Purpose Get stop time

Prototype double GetStopTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetStopTime method returns the stop time as a double,
in seconds, of the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetStopTime method gets the stop time, in seconds, of
the target application. This is the amount of time the target application
runs before stopping.

3-112

xPCTarget.GetTETLog

Purpose Get TET log

Prototype VARIANT GetTETLog(long start, long numsamples,
long decimation);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from the
TET log.

[in] decimation Select whether to copy all the sample values or
every Nth value.

[out, retval]
Outarray

The log is stored in Outarray, whose allocation is
the responsibility of the caller.

Return The xPCTarget.GetTETLog method returns the TET log. If the method
detects an error, it returns VT_ERROR, a scalar.

Description The xPCTarget.GetTETLog method gets the task execution time (TET)
log. Entering 1 for decimation copies all values. Entering N copies
every Nth value. For start, the sample indices range from 0 to (N-1),
where N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the maximum number of
samples.

Note that the target application must be stopped before you get the
number.

3-113

xPCTarget.GetTimeLog

Purpose Get time log

Prototype VARIANT GetTimeLog(long start, long numsamples,
long decimation);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from
the time log.

[in] decimation Select whether to copy all the sample values
or every Nth value.

Return The xPCTarget.GetTimeLog method returns the time log. If the method
detects an error, it returns VT_ERROR, a scalar.

Description The xPCTarget.GetTimeLog method gets the time log. This is
especially relevant in the case of value-equidistant logging, where
the logged values might not be uniformly spaced in time. Entering
1 for decimation copies all values. Entering N copies every Nth
value. For start, the sample indices range from 0 to (N-1), where
N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the number of samples.

Note that the target application must be stopped before you get the
number.

3-114

xPCTarget.GetxPCError

Purpose Get error string

Prototype BSTR GetxPCError();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetxPCError method returns the string for the last
reported error. If the software has not reported an error, this method
returns 0.

Description The xPCTarget.GetxPCError method gets the string of the error last
reported by another COM API method. This value is reset every time
you call a new method. Therefore, you should check this constant value
immediately after a call to an API COM method. You can use this
method in conjunction with the xPCTarget.isxPCError method, which
detects that an error has occurred.

See Also API method xPCTarget.isxPCError

3-115

xPCTarget.Init

Purpose Initialize target object to communicate with target computer

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCTarget

Return If the method detects an error, it returns -1. Otherwise, it returns 0.

If the xPCTarget.Init method initializes the target object without
detecting an error, it returns 0. If the target object fails to initialize,
this method returns -1.

Description The xPCTarget.Init method initializes the target object to
communicate with the target computer referenced by the xPCProtocol
object.

3-116

xPCTarget.IsAppRunning

Purpose Return running status for target application

Prototype long IsAppRunning();

Member
Of

XPCAPICOMLib.xPCTarget

Return If the target application is stopped, the xPCTarget.IsAppRunning
method returns 0. If the target application is running, this method
returns 1. If the method detects an error, it returns -1.

Description The xPCTarget.IsAppRunning method returns 1 or 0 depending on
whether the target application is stopped or running.

3-117

xPCTarget.IsOverloaded

Purpose Return overload status for target computer

Prototype long IsOverloaded();

Member
Of

XPCAPICOMLib.xPCTarget

Return If the target application has overloaded the CPU, the
xPCTarget.IsOverloaded method returns 1. If it has not overloaded
the CPU, the method returns 0. If the method detects an error, it
returns -1.

Description The xPCTarget.IsOverloaded method checks if the target application
has overloaded the target computer and returns 1 if it has and 0 if it
has not. If the target application is not running, the method returns 0.

3-118

xPCTarget.isxPCError

Purpose Return error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If an error occurred, the method returns 1. Otherwise, it returns 0.

Description Use the xPCTarget.isxPCError method to check for errors that might
occur after a call to the xPCTarget class methods. If the method detects
that an error occurred, call the xPCTarget.GetxPCError method to
get the string for the error.

See Also API method xPCTarget.GetxPCError

3-119

xPCTarget.LoadApp

Purpose Load target application onto target computer

Prototype long LoadApp(BSTR pathstr, BSTR filename);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] pathstr Enter the full path to the target application file,
excluding the file name. For example, in C, use a
string like "C:\\work", in Microsoft Visual Basic,
use a string like 'C:\work'.

[in] filename Enter the name of a compiled target application
(*.dlm) without the file extension. For example,
in C use a string like "xpcosc", in Microsoft
Visual Basic, use a string like 'xpcosc'.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.LoadApp method loads the compiled target application
to the target computer. pathstr must not contain the trailing
backslash. pathstr can be set to NULL or to the string 'nopath' if the
application is in the current folder. The variable filename must not
contain the target application extension.

Before returning, xPCTarget.LoadApp waits for a certain amount of
time before checking whether the model initialization is complete. In the
case where the model initialization is incomplete, xPCTarget.LoadApp
returns a timeout error to indicate a connection problem (for example,
ETCPREAD). By default, xPCTarget.LoadApp checks for target readiness
five times, with each attempt taking approximately 1 second (less if
the target is ready). However, for larger models or models requiring
longer initialization (for example, those with thermocouple boards),
the default might not be long enough and a spurious timeout can

3-120

xPCTarget.LoadApp

be generated. The methods xPCProtocol.GetLoadTimeOut and
xPCProtocol.SetLoadTimeOut control the number of attempts made.

3-121

xPCTarget.MaximumTET

Purpose Copy maximum task execution time to array

Prototype VARIANT MaximumTET();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MaximumTET method returns a VARIANT object
containing the maximum task execution time (TET) and the time at
which the maximum TET was achieved. The maximum TET value is
copied into the first element, and the time at which it was achieved
is copied into the second element.

Description The xPCTarget.MaximumTET method returns the maximum TET that
was achieved during the previous target application run.

3-122

xPCTarget.MaxLogSamples

Purpose Return maximum number of samples that can be in log buffer

Prototype long MaxLogSamples();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MaxLogSamples method returns the total number of
samples. If the method detects an error, it returns -1.

Description The xPCTarget.MaxLogSamples method returns the total number of
samples that can be returned in the logging buffers.

Note that the target application must be stopped before you get the
number.

3-123

xPCTarget.MinimumTET

Purpose Copy minimum task execution time to array

Prototype VARIANT MinimumTET();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MinimumTET method returns a VARIANT object
containing the minimum task execution time (TET) and the time at
which the minimum TET was achieved. The minimum TET value is
copied into the first element, and the time at which it was achieved
is copied into the second element.

Description The xPCTarget.MinimumTET method returns the minimum task
execution time (TET) that was achieved during the previous target
application run.

3-124

xPCTarget.NumLogSamples

Purpose Return number of samples in log buffer

Prototype long NumLogSamples();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.NumLogSamples method returns the number of samples
in the log buffer. If the method detects an error, it returns -1.

Description The xPCTarget.NumLogSamples method returns the number of samples
in the log buffer. In contrast to xPCTarget.MaxLogSamples, which
returns the maximum number of samples that can be logged (because of
buffer size constraints), xPCtarget.NumLogSamples returns the number
of samples actually logged.

Note that the target application must be stopped before you get the
number.

3-125

xPCTarget.NumLogWraps

Purpose Return number of times log buffer wraps

Prototype long NumLogWraps();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.NumLogWraps method returns the number of times the
log buffer wraps. If the method detects an error, it returns -1.

Description The xPCTarget.NumLogWraps method returns the number of times the
log buffer wraps.

Note that the target application must be stopped before you get the
number.

3-126

xPCTarget.SetParam

Purpose Change parameter value

Prototype long SetParam(long paramIdx, SAFEARRAY(double)*
newparamVal);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] paramIdx Parameter index.

[in, out] newparamVal Vector of doubles, assumed to be the size
required by the parameter type.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.SetParam method sets the parameter paramIdx to
the value in newparamVal. For matrices, newparamVal should be a
vector representation of the matrix in column-major format. Although
newparamVal is a vector of doubles, the method converts the values to
the expected data types (using truncation) before setting them.

See Also API methods xPCTarget.GetParam, xPCTarget.GetParamDims,
xPCTarget.GetParamIdx

3-127

xPCTarget.SetSampleTime

Purpose Change sample time for target application

Prototype long SetSampleTime(double ts);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] ts Sample time for the target application.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.SetSampleTime method sets the sample time, in
seconds, of the target application to ts. Use this method only when
the application is stopped.

3-128

xPCTarget.SetStopTime

Purpose Change stop time of target application

Prototype long SetStopTime(double tfinal);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] tfinal Enter the stop time, in seconds.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.SetStopTime method sets the stop time of the target
application to the value in tfinal. The target application will run for
this number of seconds before stopping. Set tfinal to -1.0 to set the
stop time to infinity.

3-129

xPCTarget.StartApp

Purpose Start target application

Prototype long StartApp()

Member
Of

XPCAPICOMLIB.xPCTarget

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.StartApp method starts the target application loaded
on the target machine.

3-130

xPCTarget.StopApp

Purpose Stop target application

Prototype long StopApp();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.StopApp method stops the target application loaded on
the target computer. The target application remains loaded, and the
parameter changes you made remain intact. If you want to stop and
unload an application, use xPCTarget.UnLoadApp.

3-131

xPCTarget.UnLoadApp

Purpose Unload target application

Prototype long UnLoadApp();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.UnloadApp method stops the current target application,
removes it from the target computer memory, and resets the target
computer in preparation for receiving a new target application. The
method xPCTarget.LoadApp calls this method before loading a new
target application.

3-132

4

Configuration Parameters

This topic deals with configuration parameters in Simulink Real-Time
Explorer and in the MATLAB API.

4 Configuration Parameters

Configuration Parameters

In this section...

“Simulink Real-Time Options Pane” on page 4-3

“Automatically download application after building” on page 4-4

“Download to default target PC” on page 4-5

“Specify target PC name” on page 4-6

“Name of Simulink Real-Time object created by build process” on page 4-7

“Use default communication timeout” on page 4-8

“Specify the communication timeout in seconds” on page 4-9

“Execution mode” on page 4-10

“Real-time interrupt source” on page 4-11

“I/O board generating the interrupt” on page 4-12

“PCI slot (-1: autosearch) or ISA base address” on page 4-16

“Log Task Execution Time” on page 4-17

“Signal logging data buffer size in doubles” on page 4-18

“Number of events (each uses 20 bytes)” on page 4-21

“Double buffer parameter changes” on page 4-22

“Load a parameter set from a file on the designated target file system”
on page 4-24

“File name” on page 4-25

“Build COM objects from tagged signals/parameters” on page 4-26

“Generate CANape extensions” on page 4-27

“Include model hierarchy on the target application” on page 4-28

“Enable Stateflow animation” on page 4-29

4-2

Configuration Parameters

Simulink Real-Time Options Pane
Set up general information about building target applications, including
target, execution, data logging, and other options.

Configuration
To enable the Simulink Real-Time Options pane, you must:

1 In the Code Generation pane of the Configuration Parameters dialog box,
set the System target file parameter to slrt.tlc or slrtert.tlc.

Note If you open a model that was originally saved with System
target file set to xpctarget.tlc, the software will automatically update
the setting to slrt.tlc, and likewise with xpctargetert.tlc and
slrtert.tlc. To retain the updated setting, you must save the updated
model.

2 Select C for the Language parameter on the code generation pane.

Tips

• The default values work for the generation of most target applications. If
you want to customize the build of your target application, set the option
parameters to suit your specifications.

• To access configuration parameters from the MATLAB command line, use:

- gcs — To access the current model.

- set_param — To set the parameter value.

- get_param— To get the current value of the parameter.

See Also
“Simulink Real-Time Options Configuration Parameters”

4-3

4 Configuration Parameters

Automatically download application after building
Enable Simulink Coder to build and download the target application to the
target computer.

Settings
Default: on

On
Builds and downloads the target application to the target computer.

Off
Builds the target application, but does not download it to the target
computer.

Command-Line Information

Parameter: xPCisDownloadable
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Build and Download Target Application”

4-4

Configuration Parameters

Download to default target PC
Direct Simulink Coder to download the target application to the default
target computer.

Settings
Default: on

On
Downloads the target application to the default target computer.
Assumes that you configured a default target computer through
Simulink Real-Time Explorer.

Off
Enables the Specify target PC name field so that you can enter the
target computer to which to download the target application.

Dependency
This parameter enables Specify target PC name.

Command-Line Information

Parameter: xPCisDefaultEnv
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• “Ethernet Communication Setup”

• “RS-232 Communication Setup”

4-5

4 Configuration Parameters

Specify target PC name
Specify a target computer name for your target application.

Settings
''

Tip
The target computer name appears in Simulink Real-Time Explorer as the
target computer node, for example TargetPC1.

Dependencies
This parameter is enabled by Download to default target PC.

Command-Line Information

Parameter: xPCTargetPCEnvName
Type: string
Value: Any valid target computer
Default: ''

See Also
“Simulink Real-Time Explorer Basic Operations”

4-6

Configuration Parameters

Name of Simulink Real-Time object created by build
process
Enter the name of the target object created by the build process.

Settings
Default: tg

Tip
Use this name when you work with the target object through the
command-line interface.

Command-Line Information

Parameter: RL32ObjectName
Type: string
Value: 'tg' | valid target object name
Default: 'tg'

See Also
“Target Driver Objects”

4-7

4 Configuration Parameters

Use default communication timeout
Direct Simulink Real-Time software to wait 5 (default) seconds for the target
application to be downloaded to the target computer.

Settings
Default: on

On
Waits the default amount of seconds (5) for the target application to be
downloaded to the target computer.

Off
Enables the Specify the communication timeout in seconds field
so that you can enter the maximum length of time in seconds you want
to wait for a target application to be downloaded to the target computer.

Dependencies
This parameter enables Specify the communication timeout in seconds.

Command-Line Information

Parameter: xPCisModelTimeout
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Increase the Time for Downloads”

4-8

Configuration Parameters

Specify the communication timeout in seconds
Specify a timeout, in seconds, to wait for the target application to download to
the target computer.

Settings
Default: 5

Tip
Enter the maximum length of time in seconds you want to allow the Simulink
Real-Time software to wait for the target application to download to the target
computer. If the target application is not downloaded within this time frame,
the software generates an error.

Dependencies
This parameter is enabled by Use default communication timeout.

Command-Line Information

Parameter: xPCModelTimeoutSecs
Type: string
Value: Any valid number of seconds
Default: '5'

See Also
“Increase the Time for Downloads”

4-9

4 Configuration Parameters

Execution mode
Specify target application execution mode.

Settings
Default: Real-Time

Real-Time
Executes application as a real-time application.

Freerun
Executes application as fast as possible.

Multirate models cannot be executed in Freerun execution mode. On
the Solver pane in the Configuration Parameters dialog box, set
Tasking mode for periodic sample times to SingleTasking.

Command-Line Information

Parameter: RL32ModeModifier
Type: string
Value: 'Real-Time' | 'Freerun'
Default: 'Real-Time'

See Also
“Set Configuration Parameters”

4-10

Configuration Parameters

Real-time interrupt source
Select a real-time interrupt source from the I/O board.

Settings
Default: Timer

Timer
Specifies that the board interrupt source is a timer.

Auto (PCI only)
Enables the Simulink Real-Time software to automatically determine
the IRQ that the BIOS assigned to the board and use it.

3 to 15
Specifies that the board interrupt source is an IRQ number on the board.

Tips

• The Auto (PCI only) option is available only for PCI boards. If you
have an ISA board (PC 104 or onboard parallel port), you must set the
IRQ manually.

• The Simulink Real-Time software treats PCI parallel port plug-in boards
like ISA boards. For PCI parallel port plug-in boards, you must set the
IRQ manually.

• Multiple boards can share the same interrupt number.

Command-Line Information

Parameter: RL32IRQSourceModifier
Type: string
Value: 'Timer' | Auto (PCI only) | '3'|'4'|'5' | '6'|'7' |'8' |'9'
|'10' |'11' |'12' |'13' |'14' |'15'
Default: 'Timer'

See Also
“Set Configuration Parameters”

4-11

4 Configuration Parameters

I/O board generating the interrupt
Specify the board interrupt source.

Settings
Default: None/Other

ATI-RP-R5
Specifies that the interrupt source is an ATI-RP-R5 board.

AudioPMC+
Specifies that the interrupt source is the Bittware AudioPMC+ audio
board.

Bitflow NEON
Specifies that the interrupt source is the BitFlow™ NEON video board.

Busmirror EB5100
Specifies that the interrupt source is the Busmirror EB5100 FlexRay™
board.

CB_CIO-CTR05
Specifies that the interrupt source is the Measurement Computing™
CIO-CTR05 board.

CB_PCI-CTR05
Specifies that the interrupt source is the Measurement Computing
PCI-CTR05 board.

Diamond_MM-32
Specifies that the interrupt source is the Diamond Systems MM-32
board.

FastComm 422/2-PCI
Specifies that the interrupt source is the Fastcom® 422/2-PCI board.

FastComm 422/2-PCI-335
Specifies that the interrupt source is the Fastcom 422/2-PCI-335 board.

FastComm 422/4-PCI-335
Specifies that the interrupt source is the Fastcom 422/4-PCI-335 board.

GE_Fanuc(VMIC)_PCI-5565
Specifies that the interrupt source is the GE® Fanuc VMIC PCI-5565
board.

4-12

Configuration Parameters

General Standards 24DSI12
Specifies that the interrupt source is the General Standards 24DSI12
board.

Parallel_Port
Specifies that the interrupt source is the parallel port of the target
computer.

Quatech DSCP-200/300
Specifies that the interrupt source is the Quatech® DSCP-200/300 board.

Quatech ESC-100
Specifies that the interrupt source is the Quatech ESC-100 board.

Quatech QSC-100
Specifies that the interrupt source is the Quatech QSC-100 board.

Quatech QSC-200/300
Specifies that the interrupt source is the Quatech QSC-200/300 board.

RTD_DM6804
Specifies that the interrupt source is the Real-Time Devices DM6804
board.

SBS_25x0_ID_0x100
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x100.

SBS_25x0_ID_0x101
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x101.

SBS_25x0_ID_0x102
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x102.

SBS_25x0_ID_0x103
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x103.

Scramnet_SC150+
Specifies that the interrupt source is the Systran® Scramnet+ SC150
board.

Softing_CAN-AC2-104
Specifies that the interrupt source is the Softing® CAN-AC2-104 board.

4-13

4 Configuration Parameters

Softing_CAN-AC2-PCI
Specifies that the interrupt source is the Softing CAN-AC2-PCI board.

Speedgoat_IO301
Specifies that the interrupt source is the Speedgoat IO301 FPGA board.

Speedgoat_IO302
Specifies that the interrupt source is the Speedgoat IO302 FPGA board.

Speedgoat_IO303
Specifies that the interrupt source is the Speedgoat IO303 FPGA board.

Speedgoat_IO311
Specifies that the interrupt source is the Speedgoat IO311 FPGA board.

Speedgoat_IO312
Specifies that the interrupt source is the Speedgoat IO312 FPGA board.

Speedgoat_IO313
Specifies that the interrupt source is the Speedgoat IO313 FPGA board.

Speedgoat_IO314
Specifies that the interrupt source is the Speedgoat IO314 FPGA board.

Speedgoat_IO321
Specifies that the interrupt source is the Speedgoat IO321 FPGA board.

Speedgoat_IO331
Specifies that the interrupt source is the Speedgoat IO331 FPGA board.

UEI_MFx
Specifies that the interrupt source is a United Electronic Industries
UEI-MF series board.

None/Other
Specifies that the I/O board has no interrupt source.

Command-Line Information

Parameter: xPCIRQSourceBoard
Type: string
Value: 'ATI-RP-R5' |
'AudioPMC+' |
'Bitflow NEON' |
'Busmirror EB5100' |

4-14

Configuration Parameters

'CB_CIO-CTR05' |
'CB_PCI-CTR05' |
'Diamond_MM-32' |
'FastComm 422/2-PCI' |
'FastComm 422/2-PCI-335' |
'FastComm 422/4-PCI-335' |
'GE_Fanuc(VMIC)_PCI-5565' |
'General Standards 24DSI12' |
'Parallel_Port' |
'Quatech DSCP-200/300' |
'Quatech ESC-100' |
'Quatech QSC-100' |
'Quatech QSC-200/300' |
'RTD_DM6804' |
'SBS_25x0_ID_0x100' |
'SBS_25x0_ID_0x101' |
'SBS_25x0_ID_0x102' |
'SBS_25x0_ID_0x103' |
'Scramnet_SC150+' |
'Softing_CAN-AC2-104' |
'Softing_CAN-AC2-PCI' |
'Speedgoat_IO301' |
'Speedgoat_IO302' |
'Speedgoat_IO303' |
'Speedgoat_IO311' |
'Speedgoat_IO312' |
'Speedgoat_IO313' |
'Speedgoat_IO314' |
'Speedgoat_IO321' |
'Speedgoat_IO331' |
'UEI_MFx' |
'None/Other'
Default: 'None/Other'

See Also
“Set Configuration Parameters”

4-15

4 Configuration Parameters

PCI slot (-1: autosearch) or ISA base address
Enter the slot number or base address for the I/O board generating the
interrupt.

Settings
Default: -1

The PCI slot can be either -1 (let the Simulink Real-Time software determine
the slot number) or of the form [bus, slot].

The base address is a hexadecimal number of the form 0x300.

Tip
To determine the bus and PCI slot number of the boards in the target
computer, in the Command Window, type:

tg = slrt;
tg.getPCIInfo

Command-Line Information

Parameter: xPCIOIRQSlot
Type: string
Value: '-1' | hexadecimal value
Default: '-1'

See Also
“Simulink Real-Time Options Configuration Parameters”

“PCI Bus I/O Devices”

4-16

Configuration Parameters

Log Task Execution Time
Log task execution times to the target object property tg.TETlog.

Settings
Default: on

On
Logs task execution times to the target object property tg.TETlog.

Off
Does not log task execution times to the target object property
tg.TETlog.

Command-Line Information

Parameter: RL32LogTETModifier
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Simulink Real-Time Options Configuration Parameters”

“Signal Logging Basics”

4-17

4 Configuration Parameters

Signal logging data buffer size in doubles
Enter the maximum number of sample points to save before wrapping.

Settings
Default: 100000

The maximum value for this option cannot exceed the available target
computer memory, which the Simulink Real-Time software also uses to hold
other items.

Tips

• Target applications use this buffer to store the time, states, outputs, and
task execution time (TET) logs as defined in the Simulink model.

• The maximum value for this option derives from available target computer
memory, which the Simulink Real-Time software also uses to hold other
items. For example, in addition to signal logging data, the software also
uses the target computer memory for the Simulink Real-Time kernel,
target application, and scopes.

For example, assume that your model has six data items (time, two
states, two outputs, and task execution time). If you enter a buffer size
of 100000, the target object property tg.MaxLogSamples is calculated as
floor(100000 / 6) = 16666. After the buffer saves 16666 sample points,
it wraps and further samples overwrite the older ones.

• If you enter a logging buffer size larger than the available RAM on the
target computer, after downloading and initializing the target application,
the target computer displays a message, ERROR: allocation of logging
memory failed. To avoid this error, either install more RAM or reduce the
buffer size for logging, and then reboot the target computer. To calculate
the maximum buffer size you might have for your target application
logs, divide the amount of available RAM on your target computer by
sizeof(double), or 8. Enter that value for the Signal logging data
buffer size in doubles value.

Command-Line Information

Parameter: RL32LogBufSizeModifier

4-18

Configuration Parameters

Type: string
Value: '100000' | any valid memory size
Default: '100000'

See Also
“Simulink Real-Time Options Configuration Parameters”

4-19

4 Configuration Parameters

4-20

Configuration Parameters

Number of events (each uses 20 bytes)
Enter the maximum of events to log for the profiling tool.

Settings
Default: 5000

The maximum number of events to be logged for the profiling tool.

Tips

• An event is the start of end of an interrupt or iteration of the model.
For example, one sample can four events: the beginning and end of an
interrupt, and the beginning and end of an iteration.

• Each event contains information such as the CPU ID, model thread ID
(TID), event ID, and time stamp readings. Each event occupies 20 bytes.

Command-Line Information

Parameter: xPCRL32EventNumber
Type: string
Value: any valid number of events
Default: '5000'

See Also
“Execution Profiling for Target Applications”

4-21

4 Configuration Parameters

Double buffer parameter changes
Use a double buffer for parameter tuning. This enables parameter tuning
so that the process of changing parameters in the target application uses
a double buffer.

Settings
Default: off

On
Changes parameter tuning to use a double buffer.

Off
Suppresses double buffering of parameter changes in the target
application.

Tips

• When a parameter change request is received, the new value is compared
to the old one. If the new value is identical to the old one, it is discarded,
and if different, it is queued.

• At the start of execution of the next sample of the real-time task, the
queued parameters are updated. This means that parameter tuning affects
the task execution time (TET), and the very act of parameter tuning can
cause a CPU overload error.

• Double buffering leads to a more robust parameter tuning interface, but
it increases task execution time and the higher probability of overloads.
Under typical conditions, keep double buffering off (default).

Command-Line Information

Parameter: xpcDblBuff
Type: string
Value: 'on' | 'off'
Default: 'off'

4-22

Configuration Parameters

See Also
“Simulink Real-Time Options Configuration Parameters”

4-23

4 Configuration Parameters

Load a parameter set from a file on the designated
target file system
Automatically load a parameter set from a file on the designated target
computer file system.

Settings
Default: off

On
Enable the automatic loading of a parameter set from the file specified
by File name on the designated target computer file system.

Off
Suppress the automatic loading of a parameter set from a file on the
designated target computer file system.

Dependencies
This parameter enables File name.

Command-Line Information

Parameter: xPCLoadParamSetFile
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Simulink Real-Time Options Configuration Parameters”

“Save and Reload Parameters Using MATLAB Language”

4-24

Configuration Parameters

File name
Specify the target computer file name from which to load the parameter set.

Settings
''

Tip
If the named file does not exist, the software loads the parameter set built
with the model.

Dependencies
This parameter is enabled by Load a parameter set from a file on the
designated target file system.

Command-Line Information

Parameter: xPCOnTgtParamSetFileName
Type: string
Value: Any valid file name
Default: ''

See Also
“Simulink Real-Time Options Configuration Parameters”

4-25

4 Configuration Parameters

Build COM objects from tagged signals/parameters
Enable build process to create a model-specific COM library file.

Settings
Default: off

On
Creates a model-specific COM library file, <model_name>COMiface.dll.

Off
Does not create a model-specific COM library file.

Tip
Use the model-specific COM library file to create custom GUIs with Visual
Basic or other tools that can use COM objects.

Command-Line Information

Parameter: xpcObjCom
Type: string
Value: 'on' | 'off'
Default: 'off'

4-26

Configuration Parameters

Generate CANape extensions
Enable target applications to generate data, such as that for A2L, for Vector
CANape®.

Settings
Default: off

On
Enables target applications to generate data, such as that for A2L, for
Vector CANape.

Off
Does not enable target applications to generate data, such as that for
A2L, for Vector CANape.

Command-Line Information

Parameter: xPCGenerateASAP2
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Configuring the Vector CANape Device”

4-27

4 Configuration Parameters

Include model hierarchy on the target application
Includes the Simulink model hierarchy as part of the target application.

Settings
Default: off

On
Includes the model hierarchy as part of the target application.

Off
Excludes the model hierarchy from the target application.

Tips
Including the model hierarchy in the target application:

• Lets you connect to the target computer from Simulink Real-Time Explorer
without being in the target application build folder.

• Can increase the size of the target application, depending on the size of
the model.

Command-Line Information

Parameter: xPCGenerateXML
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Monitor Signals Using Simulink Real-Time Explorer”

4-28

Configuration Parameters

Enable Stateflow animation
Enables visualization of Stateflow® chart animation.

Settings
Default: off

On
Enables visualization of Stateflow chart animation.

Off
Disables visualization of Stateflow chart animation.

Command-Line Information

Parameter: xPCEnableSFAnimation
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Animate Stateflow Charts Using Simulink External Mode”

4-29

4 Configuration Parameters

4-30

5

Using Simulink Real-Time
Explorer Instruments

• “Instrumenting a Model” on page 5-2

• “Create Instrument Panel” on page 5-4

• “Configure Instrument for Set Point Parameter” on page 5-5

• “Configure Instrument for Tank Level Signal” on page 5-7

• “Run Instrumented Model” on page 5-9

• “Instruments — Alphabetical List” on page 5-11

5 Using Simulink® Real-Time™ Explorer Instruments

Instrumenting a Model
In this example, based upon the xpctank model, you create an instrument
panel that controls the tank level set point and displays the change in tank
level in response to changes in set point.

You must have already completed the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (command slrtexplr).

3 Connected to the target computer in the Targets pane (on the toolbar).

To instrument the xpctank model, perform these steps:

1 “Create Instrument Panel” on page 5-4

2 “Configure Instrument for Set Point Parameter” on page 5-5

5-2

Instrumenting a Model

3 “Configure Instrument for Tank Level Signal” on page 5-7

The next task is “Run Instrumented Model” on page 5-9.

5-3

5 Using Simulink® Real-Time™ Explorer Instruments

Create Instrument Panel
1 In the Panels pane, right-click on the Instrument Panels node, and then
click Add New.

2 Type a name and folder in the Name and Location text boxes. Give the
panel a name like xpctank_instr.slrtip.

3 Click the Save icon to save your instrument panel.

The next task is “Configure Instrument for Set Point Parameter” on page 5-5.

5-4

Configure Instrument for Set Point Parameter

Configure Instrument for Set Point Parameter
You must have previously created the xpctank_instr.slrtip instrument
panel.

1 From the Palette pane, drag a Slider instrument into the
xpctank_instr.slrtip instrument panel.

2 Open the Parameter workspace for model xpctank (on the toolbar).

3 In the Parameter workspace, select the Parameter icon next to
parameter SetPoint and drag it to the Slider instrument.

A small copy of the Parameter icon appears next to the Slider instrument.

4 Select the Slider instrument, and then click the Tasks icon in the top
right corner.

5 In the Slider Tasks dialog box, set property Min to 0 and property Span
to 10.

6 From the Palette pane, drag a Label layout item to under the Slider
instrument.

7 Click the Label element.

8 In the Properties pane, scroll down to the Appearance node. Set the
Text property to Set Point.

9 Scroll down to the TextAlign property. Click the down arrow and select
the center of the nine blocks presented.

The TextAlign property becomes MiddleCenter.

10 Click the Save icon to save your instrument panel.

At the end of this task, the Simulink Real-Time Explorer window looks
like this figure.

5-5

5 Using Simulink® Real-Time™ Explorer Instruments

You can set the exact value of parameter SetPoint using, for example, a
NumericEntry instrument.

The next task is “Configure Instrument for Tank Level Signal” on page 5-7.

5-6

Configure Instrument for Tank Level Signal

Configure Instrument for Tank Level Signal
You must have previously created the xpctank_instr.slrtip instrument
panel.

1 From the Palette pane, drag a GaugeFluidLevel instrument into the
xpctank_instr.slrtip instrument panel.

2 Open the Signal workspace for model xpctank (on the toolbar).

3 In the Signals workspace, select the Signal icon next to signal TankLevel
and drag it to the Slider instrument.

A small copy of the Signal icon appears next to the Slider instrument.

4 Select the GaugeFluidLevel instrument, and then click the Tasks icon in
the top right corner.

5 In the GaugeFluidLevel Tasks dialog box, set property Min to 0 and
property Span to 10.

6 From the Palette pane, drag a Label layout item to under the
GaugeFluidLevel instrument.

7 Click the Label element.

8 In the Properties pane, scroll down to the Appearance node. Set the
Text property to Tank Level.

9 Scroll down to the TextAlign property. Click the down arrow and select
the center of the nine blocks presented.

The TextAlign property becomes MiddleCenter.

10 Click the Save icon to save your instrument panel.

At the end of this task, the Simulink Real-Time Explorer window looks
like this figure.

5-7

5 Using Simulink® Real-Time™ Explorer Instruments

You can view the exact value of signal TankLevel using, for example, a
NumericDisplay instrument.

The next task is “Run Instrumented Model” on page 5-9.

5-8

Run Instrumented Model

Run Instrumented Model
This example shows how to run an instrumented model. Before carrying
out this procedure, you must have performed the steps in “Instrumenting
a Model” on page 5-2.

1 Set property Stop time to inf in the Applications pane (on the
toolbar).

2 To start the instrument, in the xpctank_instr.slrtip instrument panel,

click the Run Instrument icon .

3 To start execution, in the Applications pane, click the target application,
and then click the Start icon on the toolbar.

4 Using the Slider instrument, set the tank level to the required value, such
as 5.

The tank level rises to and oscillates around the set point, as shown in
this figure.

5-9

5 Using Simulink® Real-Time™ Explorer Instruments

5 To stop execution, in the Applications pane, click the target application,
and then click the Stop icon on the toolbar.

6 To stop the instruments, in the xpctank_instr.slrtip instrument panel,

click the Stop Instrument icon .

5-10

Instruments — Alphabetical List

Instruments — Alphabetical List
GaugeAngular
GaugeFluidLevel
GaugeLinear
GroupBox
HexadecimalDisplay
Knob
Label
LED
NumericDisplay
NumericEntry
NumericUpDownEntry
Panel
PictureBox
Slider
SwitchLED

5-11

GaugeAngular

Purpose Graphic instrument to display signal values

Description
Use the GaugeAngular instrument to display real-valued data suitable
for an angular gauge, such as pressure, speed, and current.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Scale Graphic Display

The root node of this parameter is Instrument.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the parts of the
display

The root node of these parameters is
→Instrument→ScaleDisplay→GeneratorAuto.

5-12

GaugeAngular

Parameter Usage

DesiredIncrement Display of major tick
values. number of labels
= span/(desired increment +
1). Does nothing if the required
labels do not fit in the space
available in the graphic.

FixedMinMaxMajor If True, the top and bottom ticks
are constrained to be major ticks
with min/max values defined by
Min and Span

MidIncluded If True, insert a tick halfway
between major ticks.

IfMinorCount is even, space the
minor ticks equally around the
center tick. If MinorCount is
odd, replace the center tick with
the middle tick. If

MinorCount Number of minor ticks between
major ticks

MinTextSpacing Minimum space between scale
ticks

Scale Text Display

The root node of these parameters is
→Instrument→ScaleDisplay→TextFormatting.

Parameter Usage

Precision Number of digits to the right of
the decimal point

PrecisionStyle One of FixedDecimalPoints,
SignificantDigits, None

5-13

GaugeAngular

Style One of Number, Thousands,
Prefix, Exponent, Price32nds,
DateTime, DateTimeUTC

UnitsText Display unit next to tick labels

General Scale Range

The root node of these parameters is→Instrument→ScaleRange.

Parameter Usage

Min Minimum possible value

Reverse If True, flip the display to increase
in the opposite direction

ScaleType One of Linear, Log10, and
SplitLinearLog10

Span Number of values between the
min and max values

Angular Scale Range

The root node of these parameters is→Instrument→ScaleRange.

Parameter Usage

AngleMin Specify starting point of scale,
from bottom of circle

AngleSpan Specify number of degrees taken
up by scale

5-14

GaugeFluidLevel

Purpose Graphic instrument to display values of fluid sensor signals

Description
Use the GaugeFluidLevel instrument to display real-valued data
suitable for a fluid gauge, such as volume and pressure.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Scale Graphic Display

The root node of this parameter is Instrument.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the parts of the
display

The root node of these parameters is
→Instrument→ScaleDisplay→GeneratorAuto.

5-15

GaugeFluidLevel

Parameter Usage

DesiredIncrement Display of major tick
values. number of labels
= span/(desired increment +
1). Does nothing if the required
labels do not fit in the space
available in the graphic.

FixedMinMaxMajor If True, the top and bottom ticks
are constrained to be major ticks
with min/max values defined by
Min and Span

MidIncluded If True, insert a tick halfway
between major ticks.

IfMinorCount is even, space the
minor ticks equally around the
center tick. If MinorCount is
odd, replace the center tick with
the middle tick. If

MinorCount Number of minor ticks between
major ticks

MinTextSpacing Minimum space between scale
ticks

Scale Text Display

The root node of these parameters is
→Instrument→ScaleDisplay→TextFormatting.

Parameter Usage

Precision Number of digits to the right of
the decimal point

PrecisionStyle One of FixedDecimalPoints,
SignificantDigits, None

5-16

GaugeFluidLevel

Style One of Number, Thousands,
Prefix, Exponent, Price32nds,
DateTime, DateTimeUTC

UnitsText Display unit next to tick labels

General Scale Range

The root node of these parameters is→Instrument→ScaleRange.

Parameter Usage

Min Minimum possible value

Reverse If True, flip the display to increase
in the opposite direction

ScaleType One of Linear, Log10, and
SplitLinearLog10

Span Number of values between the
min and max values

5-17

GaugeLinear

Purpose Graphic instrument to display signal values

Description
Use the GaugeLinear instrument to display real-valued data suitable
for a linear gauge, such as temperature, volume, and pressure.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Scale Graphic Display

The root node of this parameter is Instrument.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the parts of the
display

The root node of these parameters is
→Instrument→ScaleDisplay→GeneratorAuto.

5-18

GaugeLinear

Parameter Usage

DesiredIncrement Display of major tick
values. number of labels
= span/(desired increment +
1). Does nothing if the required
labels do not fit in the space
available in the graphic.

FixedMinMaxMajor If True, the top and bottom ticks
are constrained to be major ticks
with min/max values defined by
Min and Span

MidIncluded If True, insert a tick halfway
between major ticks.

IfMinorCount is even, space the
minor ticks equally around the
center tick. If MinorCount is
odd, replace the center tick with
the middle tick. If

MinorCount Number of minor ticks between
major ticks

MinTextSpacing Minimum space between scale
ticks

Scale Text Display

The root node of these parameters is
→Instrument→ScaleDisplay→TextFormatting.

Parameter Usage

Precision Number of digits to the right of
the decimal point

PrecisionStyle One of FixedDecimalPoints,
SignificantDigits, None

5-19

GaugeLinear

Style One of Number, Thousands,
Prefix, Exponent, Price32nds,
DateTime, DateTimeUTC

UnitsText Display unit next to tick labels

General Scale Range

The root node of these parameters is→Instrument→ScaleRange.

Parameter Usage

Min Minimum possible value

Reverse If True, flip the display to increase
in the opposite direction

ScaleType One of Linear, Log10, and
SplitLinearLog10

Span Number of values between the
min and max values

5-20

GroupBox

Purpose Nonscrollable graphic container for instruments

Description
The GroupBox graphic provides a container for other instruments. It
can be stretched and shrunk at design time, but cannot be scrolled.

Key
Parameters

The key parameters are under the Layout node in the property list.

Parameter Usage

AutoSize If True, the box expands at
design time to make visible the
instruments within it

AutoSizeMode Possible values are
GrowAndShrink and GrowOnly.
The default is GrowOnly.

5-21

HexadecimalDisplay

Purpose Text box instrument to display signal values

Description
The HexadecimalDisplay instrument displays numerical data in
hexadecimal format. It is used for digital data, such as status codes
and register contents.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Parameter Usage

AutoSize If True, the box expands at design
time to make visible the specified
digits. The default is True.

DigitCount Number of hex digits to be
displayed

DigitLeading Possible values are None and
Zeros.

5-22

Knob

Purpose Graphic instrument to set parameter values

Description
Use the Knob instrument to set real-valued data such as amplitude
and frequency under conditions where an exact value is not required.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Offswitch Graphic Display

The root node of this parameter is→Instrument→OffSwitch.

Parameter Usage

Enabled If True, the switch is visible

On If True, the switch is on

Scale Graphic Display

The root node of this parameter is Instrument.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the parts of the
display

5-23

Knob

The root node of these parameters is
→Instrument→ScaleDisplay→GeneratorAuto.

Parameter Usage

DesiredIncrement Display of major tick
values. number of labels
= span/(desired increment +
1). Does nothing if the required
labels do not fit in the space
available in the graphic.

FixedMinMaxMajor If True, the top and bottom ticks
are constrained to be major ticks
with min/max values defined by
Min and Span

MidIncluded If True, insert a tick halfway
between major ticks.

IfMinorCount is even, space the
minor ticks equally around the
center tick. If MinorCount is
odd, replace the center tick with
the middle tick. If

MinorCount Number of minor ticks between
major ticks

MinTextSpacing Minimum space between scale
ticks

Scale Text Display

The root node of these parameters is
→Instrument→ScaleDisplay→TextFormatting.

Parameter Usage

Precision Number of digits to the right of
the decimal point

5-24

Knob

PrecisionStyle One of FixedDecimalPoints,
SignificantDigits, None

Style One of Number, Thousands,
Prefix, Exponent, Price32nds,
DateTime, DateTimeUTC

UnitsText Display unit next to tick labels

General Scale Range

The root node of these parameters is→Instrument→ScaleRange.

Parameter Usage

Min Minimum possible value

Reverse If True, flip the display to increase
in the opposite direction

ScaleType One of Linear, Log10, and
SplitLinearLog10

Span Number of values between the
min and max values

Angular Scale Range

The root node of these parameters is→Instrument→ScaleRange.

Parameter Usage

AngleMin Specify starting point of scale,
from bottom of circle

AngleSpan Specify number of degrees taken
up by scale

5-25

Label

Purpose Graphic container for text

Description
Use the Label graphic to add text to the instrument layout.

Key
Parameters

The key parameters are under the Appearance and Layout nodes
in the property list.

Appearance Parameters

The root node of these parameters is Appearance.

Parameter Usage

Text Contains the text displayed by
the label

TextAlign Specifies left-right, top-bottom
alignment using a 3x3 matrix.

This display represents setting
TopLeft.

Layout Parameters

The root node of this parameter is Layout.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the text

5-26

LED

Purpose Graphic instrument to display signal values

Description
Use the LED instrument to display binary (1 or 0) data.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

General Parameters

The root node of these parameters is Instrument.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the specified
graphic parameters.

BlinkerEnable If True, LED graphic blinks
continuously.

Indicator Parameters

The root node of these parameters is→Instrument→Indicator.

Parameter Usage

ColorActive Indicator color if signal value is 1.

ColorInactive Indicator color if signal value is 0.

5-27

NumericDisplay

Purpose Text box instrument to display signal values

Description
Use the NumericDisplay instrument to display real-valued data in
selected formats.

Key
Parameters

The key parameters are under the Instrument and Iocomp nodes
in the property list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

General Parameters

The root node of this parameter is Instrument.

Parameter Usage

AutoSize If True, the box expands at design
time to make visible the specified
digits. The default is True.

Value Display

The root node of these parameters is→Iocomp→TextFormatting.

Parameter Usage

Precision Number of digits to the right of
the decimal point

PrecisionStyle One of FixedDecimalPoints,
SignificantDigits, None

5-28

NumericDisplay

Style One of Number, Thousands,
Prefix, Exponent, Price32nds,
DateTime, DateTimeUTC

UnitsText Display unit next to tick labels

5-29

NumericEntry

Purpose Text box instrument to set parameter values

Description
Use the NumericEntry instrument to enter real-valued data in
selected formats under conditions where an exact value is required.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Text Display

The root node of these parameters is→Instrument→TextFormatting.

Parameter Usage

Precision Number of digits to the right of
the decimal point

PrecisionStyle One of FixedDecimalPoints,
SignificantDigits, None

Style One of Number, Thousands,
Prefix, Exponent, Price32nds,
DateTime, DateTimeUTC

UnitsText Display unit next to tick labels

5-30

NumericUpDownEntry

Purpose Text box instrument to set parameter values

Description
Use the NumericUpDownEntry instrument to enter real-valued data
and increment it by a specified amount under conditions where a step
change is required.

Key
Parameters

The key parameters are under the Layout and Data nodes in the
property list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

General Parameters

The root node of this parameter is Layout.

Parameter Usage

AutoSize If True, the box expands at design
time to make visible the specified
digits. The default is False.

Scale Range

The root node of these parameters is Data.

Parameter Usage

DecimalPlaces Number of decimal places to
display

Increment Value to add or subtract in
response to an up-arrow or
down-arrow

5-31

NumericUpDownEntry

Maximum Maximum data value

Minimum Minimum data value

5-32

Panel

Purpose Scrollable graphic container for instruments

Description
The Panel graphic provides a container for other instruments. You can
stretch and shrink it at design time and scroll it at run time.

Key
Parameters

The key parameters are under the Layout node in the property list.

Parameter Usage

AutoScroll If True, the box scrolls at
run time to make fully visible
partially-visible instruments
within it.

AutoSize If True, the box expands at
design time to make visible the
instruments within it.

AutoSizeMode Possible values are
GrowAndShrink and GrowOnly.
The default is GrowOnly

5-33

PictureBox

Purpose Graphic container for pictures

Description
The PictureBox graphic provides a container for graphics, for example
a photograph or line drawing.

Key
Parameters

The key parameter is under the Behavior node in the property list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Parameter Usage

SizeMode Possible values are Normal,
StretchImage, AutoSize,
CenterImage, and Zoom. The
default is Normal

5-34

Slider

Purpose Graphic instrument to set parameter values

Description
Use the Slider instrument to set real-valued data such as temperature
and pressure under conditions where the exact value is not required.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

Scale Graphic Display

The root node of this parameter is Instrument.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the parts of the
display

The root node of these parameters is
→Instrument→ScaleDisplay→GeneratorAuto.

5-35

Slider

Parameter Usage

DesiredIncrement Display of major tick
values. number of labels
= span/(desired increment +
1). Does nothing if the required
labels do not fit in the space
available in the graphic.

FixedMinMaxMajor If True, the top and bottom ticks
are constrained to be major ticks
with min/max values defined by
Min and Span

MidIncluded If True, insert a tick halfway
between major ticks.

IfMinorCount is even, space the
minor ticks equally around the
center tick. If MinorCount is
odd, replace the center tick with
the middle tick. If

MinorCount Number of minor ticks between
major ticks

MinTextSpacing Minimum space between scale
ticks

Scale Text Display

The root node of these parameters is
→Instrument→ScaleDisplay→TextFormatting.

Parameter Usage

Precision Number of digits to the right of
the decimal point

PrecisionStyle One of FixedDecimalPoints,
SignificantDigits, None

5-36

Slider

Style One of Number, Thousands,
Prefix, Exponent, Price32nds,
DateTime, DateTimeUTC

UnitsText Display unit next to tick labels

General Scale Range

The root node of these parameters is→Instrument→ScaleRange.

Parameter Usage

Min Minimum possible value

Reverse If True, flip the display to increase
in the opposite direction

ScaleType One of Linear, Log10, and
SplitLinearLog10

Span Number of values between the
min and max values

5-37

SwitchLED

Purpose Graphic instrument to set parameter values

Description
Use the SwitchLED instrument to set a binary (1 or 0) status.

Key
Parameters

The key parameters are under the Instrument node in the property
list.

To access a parameter dialog box for the instrument as a whole, select
the instrument and click the Tasks icon in the top right corner. To
access a dialog box for a parameter group, click the group, and then

click the continuation dots to the right of the group.

General Parameters

The root node of these parameters is Instrument.

Parameter Usage

AutoSize If True, size the graphic to
accommodate the specified
graphic parameters.

Text Receives visible text on switch.

Indicator Parameters

The root node of these parameters is→Instrument→Indicator.

Parameter Usage

ColorActive Indicator color if signal value is 1.

ColorInactive Indicator color if signal value is 0.

5-38

6

Target Computer
Command-Line Interface
Reference

6 Target Computer Command-Line Interface Reference

Target Computer Commands
You have a limited set of commands that you can use to work the target
application after it has been loaded to the target computer, and to interface
with the scopes for that application.

The target computer command-line interface enables you to work with target
and scope objects in a limited capacity. Methods let you interact directly with
the scope or target. Property commands let you work with target and scope
properties. Variable commands let you alias target computer command-line
interface commands to names of your choice.

Refer to “Control Application at Target Computer Command Line” for a
description of how to use these methods and commands.

In this section...

“Target Object Methods” on page 6-2

“Target Object Property Commands” on page 6-3

“Scope Object Methods” on page 6-5

“Scope Object Property Commands” on page 6-6

“Aliasing with Variable Commands” on page 6-8

Target Object Methods
When you are using the target computer command-line interface, target object
methods are limited to starting and stopping the target application.

The following table lists the syntax for the target commands that you can use
on the target computer. The equivalent MATLAB syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods. These methods assume that you have already loaded the target
application onto the target computer.

6-2

Target Computer Commands

Target
Computer
Command Description and Syntax MATLAB Equivalent

start Start the target application
currently loaded on the target
computer.

Syntax: start

tg.start or +tg

stop Stop the target application
currently running on the target
computer.

Syntax: stop

tg.stop or -tg

reboot Reboot the target computer.

Syntax: reboot

tg.reboot

Target Object Property Commands
When you are using the target computer command-line interface, target object
properties are limited to parameters, signals, stop time, and sample time.
Note the difference between a parameter index (0, 1, . . .) and a parameter
name (P0, P1, . . .).

The following table lists the syntax for the target commands that you can
use to manipulate target object properties. The MATLAB equivalent syntax
is shown in the right column, and the target object name tg is used as an
example for the MATLAB methods.

6-3

6 Target Computer Command-Line Interface Reference

Target
Computer
Command Description and Syntax MATLAB Equivalent

getpar Display the value of a
block parameter using the
parameter index.

Syntax: getpar
parameter_index

get(tg, 'parameter_name')

setpar Change the value of a
block parameter using the
parameter index.

Syntax: setpar
parameter_index =
floating_point_number

set(tg, 'parameter_name',
number)

stoptime Enter a new stop time.
Use inf to run the target
application until you
manually stop it or reset the
target computer.

Syntax: stoptime =
floating_point_number

tg.stoptime = number

sampletime Enter a new sample time.

Syntax: sampletime =
floating_point_number

tg.sampletime = number

set(tg, 'SampleTime',
number)

6-4

Target Computer Commands

Target
Computer
Command Description and Syntax MATLAB Equivalent

P# Display the value of a block
parameter. For example,
P2.

Syntax: parameter_name.

parameter_name is P0, P1,
. . .

tg.getparam(parameter_
index)

S# Display the value of a
signal. For example, S2.

Syntax: signal_name

signal_name is S0, S1, .
. .

tg.getsignal(signal_index)

Scope Object Methods
When using the target computer command-line interface, you use scope object
methods to start a scope and add signal traces. Notice that the methods
addscope and remscope are target object methods on the host computer, and
notice the difference between a signal index (0, 1, . . .) and a signal name
(S0, S1, . . .).

The following table lists the syntax for the target commands that you can use
on the target computer. The MATLAB equivalent syntax is shown in the right
column. The target object name tg and the scope object name sc are used as
an example for the MATLAB methods.

Target
Computer
Command Description and Syntax MATLAB Equivalent

addscope addscope scope_index
addscope

tg.addscope(scope_index)
tg.addscope

remscope remscope scope_index
remscope all

tg.remscope(scope_index)
tg.remscope

6-5

6 Target Computer Command-Line Interface Reference

Target
Computer
Command Description and Syntax MATLAB Equivalent

startscope startscope scope_index sc.start or +sc

stopscope stopscope scope_index sc.stop or -sc

addsignal addsignal scope_index
= signal_index1,
signal_index2, . . .

sc.addsignal(signal_-
index_vector)

remsignal remsignal scope_index
= signal_index1,
signal_index2, . . .

sc.remsignal(signal_-
index_vector)

viewmode Zoom in to one scope or
zoom out to all scopes.

Syntax: viewmode
scope_index

viewmode 'all'

tg.viewMode =
scope_index
tg.viewMode = 'all'

ylimit ylimit scope_index
ylimit scope_index =
auto
ylimit scope_index =
num1, num2

sc.YLimit
sc.YLimit='auto'
sc.YLimit([num1 num2])

grid grid scope_index on
grid scope_index off

sc.Grid = on
sc.Grid = off

Scope Object Property Commands
When you use the target computer command-line interface, scope object
properties are limited to those shown in the following table. Notice the
difference between a scope index (0, 1, . . .) and the MATLAB variable name
for the scope object on the host computer. The scope index is indicated in the
top left corner of a scope window (SC0, SC1, . . .).

If a scope is running, you need to stop the scope before you can change a
scope property.

6-6

Target Computer Commands

The following table lists the syntax for the target commands that you can
use on the target computer. The equivalent MATLAB syntax is shown in
the right column, and the scope object name sc is used as an example for
the MATLAB methods

Target Computer Command MATLAB Equivalent

numsamples scope_index =
number

sc.NumSamples = number

decimation scope_index= number sc.Decimation = number

scopemode scope_index = 0 or
numerical, 1 or redraw, 2 or
sliding, 3 or rolling

sc.Mode = 'numerical',
'redraw', 'sliding', 'rolling'

triggermode scope_index =
0, freerun, 1, software, 2,
signal, 3, scope

sc.TriggerMode = 'freerun',
'software', 'signal', 'scope'

numprepostsamples scope_index
= number

sc.NumPrePostSamples = number

triggersignal scope_index =
signal_index

sc.TriggerSignal =
signal_index

triggersample scope_index =
number

sc.TriggerSample = number

triggerlevel scope_index =
number

sc.TriggerLevel = number

triggerslope scope_index = 0,
either, 1, rising, 2, falling

sc.TriggerSlope = 'Either',
'Rising', 'Falling'

triggerscope scope_index2 =
scope_index1

sc.TriggerScope = scope_index1

triggerscopesample
scope_index= integer

sc.TriggerScopeSample =
integer

Press the function key for the scope,
and then press S.

sc.trigger

6-7

6 Target Computer Command-Line Interface Reference

Aliasing with Variable Commands
The following table lists the syntax for the aliasing variable commands that
you can use on the target computer. The MATLAB equivalent syntax is
shown in the right column. For a usage example, see “Alias Commands at
Target Computer Command Line”.

Target
Computer
Command Description and Syntax

MATLAB
Equivalent

setvar Set a variable to a value. Later you can use
that variable to do a macro expansion.

Syntax: setvar variable_name =
target_pc_command

For example, you can type setvar
aa=startscope 2, setvar bb=stopscope
2.

None

getvar Display the value of a variable.

Syntax: getvar variable_name

None

delvar Delete a variable.

Syntax: delvar variable_name

None

delallvar Delete all variables.

Syntax: delallvar

None

showvar Display a list of variables.

Syntax: showvar

None

6-8

7

Support Package Reference

7 Support Package Reference

Support Package Functions

7-2

supportPackageInstaller

Purpose Find and install support for third-party hardware or software

Syntax supportPackageInstaller

Description The supportPackageInstaller function opens Support Package
Installer.

Support Package Installer can install support packages, which add
support for specific third-party hardware or software to specific
MathWorks products.

To see a list of available support packages, run Support Package
Installer and advance to the second screen.

You can also start Support Package Installer in one of the following
ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware
Support Packages.

• Double-click a support package installation file (*.mlpkginstall).

7-3

supportPackageInstaller

See Also targetUpdater | matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled

7-4

targetinstaller

Purpose Open Support Package Installer and install support for third-party
hardware or software

Syntax targetinstaller

Description
Note This function has been superseded by
supportPackageInstaller. Use supportPackageInstaller instead of
targetinstaller.

The targetinstaller function opens Support Package Installer.
Support Package Installer can install support packages, which add
support for specific third-party hardware or software to specific
MathWorks products. To see a list of available support packages, run
Support Package Installer and advance to the second screen.

You can also start Support Package Installer in one of the following
ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware
Support Packages.

7-5

targetinstaller

• Double-click a support package installation file (*.mlpkginstall).

See Also supportPackageInstaller | targetUpdater |
matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled

7-6

targetupdater

Purpose Open Support Package Installer and update firmware on third-party
hardware

Syntax

Description The targetupdater function skips over the support package installation
screens and opens Support Package Installer at the “Update firmware”
screen. You can use this function to update the firmware on hardware
without repeating the support package installation process.

Tip Use this function when you have multiple pieces of hardware.

The targetupdater function is only available for support packages
that have already been installed and that require special firmware or
setup steps.

If the Hardware parameter does not present an option for your
hardware, use the supportPackageInstaller function to open Support
Package Installer. Support Package Installer will guide you through
the process of installing a support package for your hardware and, if
required, updating the firmware.

See Also supportPackageInstaller |
matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled

7-7

	toc
	Functions
	Simulink Real-Time API Reference for C
	C API Error Messages
	C API Structures and Functions — Alphabetical List

	Simulink Real-Time API Reference for COM
	COM API Methods — Alphabetical List

	Configuration Parameters
	Configuration Parameters
	Simulink Real-Time Options Pane
	Configuration
	Tips
	See Also

	Automatically download application after building
	Settings
	Command-Line Information
	See Also

	Download to default target PC
	Settings
	Dependency
	Command-Line Information
	See Also

	Specify target PC name
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Name of Simulink Real-Time object created by build process
	Settings
	Tip
	Command-Line Information
	See Also

	Use default communication timeout
	Settings
	Dependencies
	Command-Line Information
	See Also

	Specify the communication timeout in seconds
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Execution mode
	Settings
	Command-Line Information
	See Also

	Real-time interrupt source
	Settings
	Tips
	Command-Line Information
	See Also

	I/O board generating the interrupt
	Settings
	Command-Line Information
	See Also

	PCI slot (-1: autosearch) or ISA base address
	Settings
	Tip
	Command-Line Information
	See Also

	Log Task Execution Time
	Settings
	Command-Line Information
	See Also

	Signal logging data buffer size in doubles
	Settings
	Tips
	Command-Line Information
	See Also

	Number of events (each uses 20 bytes)
	Settings
	Tips
	Command-Line Information
	See Also

	Double buffer parameter changes
	Settings
	Tips
	Command-Line Information
	See Also

	Load a parameter set from a file on the designated target file s
	Settings
	Dependencies
	Command-Line Information
	See Also

	File name
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Build COM objects from tagged signals/parameters
	Settings
	Tip
	Command-Line Information

	Generate CANape extensions
	Settings
	Command-Line Information
	See Also

	Include model hierarchy on the target application
	Settings
	Tips
	Command-Line Information
	See Also

	Enable Stateflow animation
	Settings
	Command-Line Information
	See Also

	Using Simulink Real-Time Explorer Instruments
	Instrumenting a Model
	Create Instrument Panel
	Configure Instrument for Set Point Parameter
	Configure Instrument for Tank Level Signal
	Run Instrumented Model
	Instruments — Alphabetical List

	Target Computer Command-Line Interface Reference
	Target Computer Commands
	Target Object Methods
	Target Object Property Commands
	Scope Object Methods
	Scope Object Property Commands
	Aliasing with Variable Commands

	Support Package Reference
	Support Package Functions

